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Theorem 1 (Problem 1). For four sets A,B,C,D, (A×B) ∪ (C ×D) ⊂ (A ∪ C)× (B ∪D).

Proof. Use direct proof. By the definition of subset relationship, we have to prove that ∀x ∈ (A × B) ∪ (C × D),

such x satisfies x ∈ (A ∪ C)× (B ∪D).

Notice that the elements in A × B and C × D are ordered pairs, so ∀x ∈ (A × B) ∪ (C × D), x has the form

as an ordered pair that x = (x1, x2). We know by the definition of set union that x ∈ A×B or x ∈ C ×D. By the

definition of the Cartesian product, x1 ∈ A and x2 ∈ B or x1 ∈ C and x2 ∈ D.

For the first case where x1 ∈ A and x2 ∈ B, x1 ∈ A ⊂ A∪C, x2 ∈ B ⊂ B∪D so x = (x1, x2) ∈ (A∪C)×(B∪D).

For the second case where x1 ∈ C and x2 ∈ D, x1 ∈ C ⊂ A∪C, x2 ∈ D ⊂ B∪D so x = (x1, x2) ∈ (A∪C)×(B∪D).

As a result, for both possible cases it must be true that x ∈ (A∪C)× (B ∪D), so the conclusion is proved.

Theorem 2 (Problem 2). There are six positive integers x1, ..., x6, prove that at least two of them will have the same

remainder when divided by 5.

Proof. Prove by contradiction.

Assume that any two of them will not have the same remainder when divided by 5. Denote r1, ..., r6 as the

respective remainder of x1, ..., x6 divided by 5 so r1, ..., r6 can only take values in {0, 1, 2, 3, 4}. By our assumption,

r1, ..., r6 are six different values so {r1, ..., r6} has cardinality six while {r1, ..., r6} ⊂ {0, 1, 2, 3, 4} has cadinality five,

a contradiction!

Remark. One may also solve this problem by constructing a function f : {x1, ..., x6} → {0, 1, 2, 3, 4} such that

f(x) = x mod 5 (the remainder of x divided by 5). If there exists i ̸= j such that xi = xj, it’s the trivial case and

the original statement is obviously true.

Otherwise, x1, ..., x6 are distinct integers. Since the domain and the codomain are both finite sets and the

codomain (cardinality 5) contains strictly less elements than the domain (cardinality 6), such f cannot be injective,

so the original statement is proved.

The pigeonhole principle says that if n items are put into m containers, there must exist at least one container

that contains at least ⌈ n
m⌉ items where ⌈ n

m⌉ is the smallest integer that is larger or equal to n
m (one may try to prove

it by contradiction). Problem 2 is a special case of the pigeonhole principle since by taking n = 6,m = 5, we see that

⌈ n
m⌉ = 2 so there must exist a number r ∈ {0, 1, 2, 3, 4} such that at least 2 of the integers in x1, ..., x6 have the same

remainder r divided by 5.

Theorem 3 (Problem 3). Define a relationship R on R2 that (a, b)R(c, d) if and only if a2 + b2 < c2 + d2. Is this

an equivalence relationship?

Proof. By the definition of equivalence relationship, we have to check whether R is reflexive, symmetric and transitive.

First notice that ∀(a, b) ∈ R2, a2 + b2 < a2 + b2 is not true. So we make the judgement that it cannot be an

equivalence relationship. In order to prove it, we just have to raise a counterexample.

Consider (0, 0) ∈ R2, 0 = 02 +02 < 02 +02 = 0 is not true, so (0, 0)R(0, 0) is not true and R is not reflexive. As

a result, R is not an equivalence relationship.
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Theorem 4 (Problem 4). Consider function f : R → (0,∞) such that f(x) = ex, prove that it’s bijective.

Proof. Use direct proof. In order to prove it’s bijective, we have to prove that it’s injective and surjective. In the

following proof, log actually means ln, the natural logarithm.

To prove that it’s injective, ∀x, y ∈ R, if f(x) = f(y), then ex = ey, so by taking logarithm on both sides, we

see x = log(ex) = log(ey) = y. This proves that f is injective.

To prove it’s surjective, ∀a ∈ (0,∞), consider f(x) = a so ex = a, we will see that x = log a ∈ R since a is a

positive real number and logarithm is defined for positive real number. So ∀a ∈ (0,∞),∃x = log a ∈ R such that

f(x) = a. This proves that f is surjective.

Theorem 5 (Problem 5). Consider function f : Z → Z defined as f(n) = n2+3, is it injective, surjective, bijective?

Proof. First check injectivity. ∀m,n ∈ Z, if f(m) = f(n), then m2 + 3 = n2 + 3 so m2 = n2 and m = ±n. This is

telling us that m = n is not necessarily true and we can make the judgement that f is not injective.

To prove that it’s not injective, we just have to raise a counterexample. Consider m = 1, n = −1 so m,n ∈
Z,m ̸= n but f(m) = f(1) = 12 + 3 = 4 = (−1)2 + 3 = f(−1) = f(n) so f is not injective.

Now check surjectivity. ∀a ∈ Z, consider f(n) = a so n2 + 3 = a and n2 = a − 3. It’s quite obvious that a − 3

can be negative but n2 is always non-negative. We can make the judgement that f is not surjective.

To prove that it’s not surjective, we just have to raise a counterexample. Consider a = 0 ∈ Z and if ∃n ∈ Z such

that f(n) = a, then n2 = a− 3 = −3 < 0 which is impossible for any integer n. So a = 0 is in the codomain but not

in the range and f is not surjective.

Since f is not injective, it cannot be bijective.

Theorem 6 (Problem 6). For sets A1, ..., An, first prove that (A1 ∪A2)
c = Ac

1 ∩Ac
2 and then prove that ∀n ∈ Z, n ≥

2, (
⋃n

i=1 Ai)
c
=
⋂n

i=1 A
c
i

Proof. Use direct proof. To prove that two sets are equal, just need to prove the subset relationship in both directions.

Let’s first prove (A1∪A2)
c ⊂ Ac

1∩Ac
2. ∀x ∈ (A1∪A2)

c, x is not an element in A1∪A2. Since A1 ⊂ A1∪A2, A2 ⊂
A1 ∪A2, we know that x ̸∈ A1 and x ̸∈ A2 so x ∈ Ac

1 and x ∈ Ac
2 so x ∈ Ac

1 ∩Ac
2, proved.

Then prove Ac
1 ∩ Ac

2 ⊂ (A1 ∪ A2)
c. ∀x ∈ Ac

1 ∩ Ac
2, by the definition of set intersection, x ∈ Ac

1 and x ∈ Ac
2 so

x ̸∈ A1 and x ̸∈ A2. Since A1 ⊂ A1 ∪A2, A2 ⊂ A1 ∪A2, we know that x ̸∈ A1 ∪A2 so x ∈ (A1 ∪A2)
c, proved.

So we have proved that (A1∪A2)
c = Ac

1∩Ac
2. Now let’s prove the equation for n sets by mathematical induction.

When n = 2, LHS = (A1 ∪A2)
c, RHS = Ac

1 ∩Ac
2 so both sides are equal by the proof above.

Now assume that the conclusion is true for n = k, i.e.
(⋃k

i=1 Ai

)c
=
⋂k

i=1 A
c
i . When n = k + 1,

LHS =

(
k+1⋃
i=1

Ai

)c

=

((
k⋃

i=1

Ai

)
∪Ak+1

)c

=

(
k⋃

i=1

Ai

)c

∩Ac
k+1 (1)

=

(
k⋂

i=1

Ac
i

)
∩Ac

k+1 =

k+1⋂
i=1

Ac
i = RHS (2)
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for the last equality on the first line, we view
(⋃k

i=1 Ai

)
as a whole term and use the conclusion that (A∪B)c = Ac∩Bc

we have proved above and for the first equality on the second line, we use the induction assumption. So we have

proved that the conclusion holds for n = k + 1 and this completes the induction process, proved.

Theorem 7 (Problem 7). Prove by induction that ∀n ∈ Z, n ≥ 0, 9|(43n + 8).

Proof. Prove by mathematical induction.

When n = 0, r = 43n + 8 = 1 + 8 = 9 so 9|9 is true.

Let’s assume that this conclusion holds for n = k, i.e. 9|(43k + 8). When n = k + 1, the number becomes

43(k+1) + 8 = 43k+3 + 8 = 4343k + 8 = 64 × 43k + 8. Notice that 64 × 43k + 8 = 64 × (43k + 8) − 64 × 8 + 8 =

64× (43k+8)−63×8 where by induction assumption 9|(43k+8) so 9|64× (43k+8) and since 9|63, we know 9|63×8.

As a result, 9|[64 × (43k + 8) − 63 × 8] so 9|[64 × 43k + 8] so 9|(43(k+1) + 8). When n = k + 1 the conclusion still

holds, this completes the induction process, proved.

Theorem 8 (Problem 8). Show by induction that for any positive integer n,

n∑
j=1

j

(j + 1)!
≤ 1− 1

(n+ 1)!
(3)

Proof. Prove by mathematical induction.

When n = 1, LHS = 1
2! =

1
2 , RHS = 1− 1

2! =
1
2 so LHS ≤ RHS, conclusion holds.

Let’s assume that this conclusion holds for n = k, i.e.
∑k

j=1
j

(j+1)! ≤ 1− 1
(k+1)! . When n = k + 1,

LHS =

k+1∑
j=1

j

(j + 1)!
=

k∑
j=1

j

(j + 1)!
+

k + 1

(k + 2)!
(4)

≤ 1− 1

(k + 1)!
+

k + 1

(k + 2)!
= 1− k + 2− (k + 1)

(k + 2)!
= 1− 1

(k + 2)!
= RHS (5)

where on the second line the inequality comes from induction assumption. This completes the induction process and

it’s proved.

Theorem 9 (Problem 9). Let log2 n denote the log with base 2 and log(k) n is iteratively defined as log(k−1)(log2 n)

if it’s well-defined and with initial value log(0) n = n for non-negative integers k, n. Define the iterated logarithm as

log∗ n = min
{
k ∈ N : log(k) n ≤ 1

}
(6)

for positive integer n. (i): Compute log(2) 16, log(3) 256, log(3) 265536. (ii): Compute log∗ 2, log∗ 4, log∗ 22048.

Proof. (i): log(2) 16 = log(1)(log2 16) = log(1) 4 = log(0)(log2 4) = log(0) 2 = 2.

log(3) 256 = log(2)(log2 256) = log(2) 8 = log(1)(log2 8) = log(1) 3 = log(0)(log2 3) = log2 3.

log(3) 265536 = log(2)(log2 2
65536) = log(2) 65536 = log(1)(log2 65536) = log(1) 16 = log(0)(log2 16) = log(0) 4 = 4.
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(ii): log(0) 2 = 2 > 1, log(1) 2 = log2 2 = 1 ≤ 1, so log∗ 2 = 1.

log(0) 4 = 4 > 1, log(1) 4 = log2 4 = 2 > 1, log(2) 4 = log2 log
(1) 4 = log2 2 = 1 ≤ 1, so log∗ 4 = 2.

log(0) 22048 = 22048 > 1, log(1) 22048 = log2 2
2048 = 2048 > 1, log(2) 22048 = log2 log

(1) 22048 = log2 2048 = 11 >

1, log(3) 22048 = log2 log
(2) 22048 = log2 11 > 1 since 11 > 21 = 2.

Now log(4) 22048 = log2 log
(3) 22048 = log2 log2 11 > 1 since log2 11 > 21 = 2 this is because 11 > 22 = 4.

Continue the iteration log(5) 22048 = log2 log
(4) 22048 = log2 log2 log2 11 ≤ 1 since log2 log2 11 ≤ 21 = 2 this is

because log2 11 ≤ 22 = 4 this is because 11 ≤ 24 = 16.

As a result, log∗ 22048 = 5.

Remark. We can see that log∗ n = k if and only if 22
2...

< n ≤ 22
2...

where there are k − 1 copies of ’2’ appearing

on LHS and k copies of ’2’ appearing on RHS. Since 22
22

= 22
4

< 22048 = 22
11

< 22
16

= 22
22

2

, this is consistent with

our calculation result that log∗ 22048 = 5.
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