PSTAT 8 Sample Midterm Answer

Haosheng Zhou

Feb, 2023

Problem 3

Theorem 1. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

Proof. Use direct proof.

Since $a \equiv b \pmod{n}$, by definition

$$\exists q_a \in \mathbb{Z}, r_a \in \{0, 1, ..., n-1\}, a = q_a \cdot n + r_a \tag{1}$$

$$\exists q_b \in \mathbb{Z}, r_b \in \{0, 1, ..., n-1\}, b = q_b \cdot n + r_b \tag{2}$$

$$r_a = r_b \tag{3}$$

by Euclidean algorithm, $gcd(a, n) = gcd(n, r_a)$, $gcd(n, r_b) = gcd(b, n)$. Since $r_a = r_b$, we have $gcd(n, r_a) = gcd(n, r_b)$, that's why gcd(a, n) = gcd(b, n).

Problem 4

Theorem 2. If $A - B \neq \emptyset$, then $A \not\subset B$.

Proof. Prove by contradiction.

Assume $A \subset B$, then since $A - B \neq \emptyset$, we can always take any element in A - B to find $\forall x \in A - B, x \in A$ and $x \notin B$. Since $x \in A, A \subset B$, we know $x \in B$.

This gives a contradiction since $x \notin B$ and $x \in B$. So the statement is proved.

Problem 5

Theorem 3. $\sqrt{5}$ is irrational.

Proof. Prove by contradiction.

Assume $\sqrt{5}$ is rational so $\exists p, q \in \mathbb{Z}$, gcd(p,q) = 1, $\sqrt{5} = \frac{p}{q}$. So now $p^2 = 5q^2, 5|p^2$.

Let's make an observation here that $5|p^2$ always implies that 5|p (will be proved later).

By using this observation, we conclude that 5|p so $\exists k \in \mathbb{Z}, p = 5k$. Plug back to find $p^2 = (5k)^2 = 25k^2 = 5q^2$ so $q^2 = 5k^2, 5|q^2$. Use the observation once more to see 5|q so $gcd(p,q) \ge 5$ since 5 is the common divisor of p, q.

This is a contradiction with gcd(p,q) = 1, so the statement is proved assuming that the observation is true.

At last, let's prove that our observation above is correct. Divide p by 5 so $\exists q \in \mathbb{Z}, r \in \mathbb{Z}, r \in \{0, 1, 2, 3, 4\}$ such that p = 5q + r, so $p^2 = (5q + r)^2 = 25q^2 + 10qr + r^2 = 5(5q^2 + 2qr) + r^2$. Since $5|p^2$ and $5|5(5q^2 + 2qr)$, we know that $5|r^2$. Since $1^2, ..., 4^2$ are all not multiple of 5, we conclude that r = 0 and 5|p. The observation is proved.

Remark. Notice the fact that for positive integer p and any **prime** integer a, $a|p^2$ always implies a|p. This is a very useful observation one shall bear in mind since it can be applied to prove that \sqrt{a} , $\sqrt[3]{a}$ are irrational for prime integer a.

Problem 6

Theorem 4. For positive integer a, b, a = gcd(a, b) if and only if a|b.

Proof. Use direct proof for both directions.

If a = gcd(a, b), a must be the common divisor of a, b so a|b, proved.

If a|b, a is a common divisor of a, b so by the definition of greatest common divisor, $gcd(a, b) \ge a$. On the other hand, notice that any positive divisor of a cannot exceed a so the common divisor of a, b must not exceed a, so $gcd(a, b) \le a$. As a result, gcd(a, b) = a, proved.

Problem 7

Theorem 5. For set A, B, C, D, $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof. Use direct proof. To prove that two sets are the same, just need to show they are subsets of each other.

First prove that $(A \times B) \cap (C \times D) \subset (A \cap C) \times (B \cap D)$.

 $\forall x \in (A \times B) \cap (C \times D)$, we know $x \in A \times B$ and $x \in C \times D$ so x must be an ordered pair $x = (x_1, x_2)$. As a result, $x_1 \in A$ and $x_2 \in B$ and $x_1 \in C$ and $x_2 \in D$. So $x_1 \in A \cap C$ and $x_2 \in B \cap D$, so $x = (x_1, x_2) \in (A \cap C) \times (B \cap D)$ and it's proved.

Next prove that $(A \cap C) \times (B \cap D) \subset (A \times B) \cap (C \times D)$.

 $\forall x \in (A \cap C) \times (B \cap D)$, we know x must be an ordered pair $x = (x_1, x_2)$ such that $x_1 \in A \cap C$ and $x_2 \in B \cap D$, so $x_1 \in A$ and $x_1 \in C$ and $x_2 \in B$ and $x_2 \in D$. So $(x_1, x_2) \in A \times B$ and $(x_1, x_2) \in C \times D$ so $x = (x_1, x_2) \in (A \times B) \cap (C \times D)$, proved.