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Week 1

Review: Conditional Expectation

Exercise 1. Let F2 ⊂ F1 ⊂ F be σ-fields on the probability space (Ω,F ,P). For X ∈ L1, show that

E(X − E(X|F1))
2 ≤ E(X − E(X|F2))

2. (1)

If X ∈ L2, what is the geometric interpretation?

Hints. Expand squares, it suffices to show that E[E(X|F1)]
2 ≥ E[E(X|F2)]

2. Apply Jensen’s inequality for the

r.v. E(X|F1) under the conditional expectation E(·|F2) yields E([E(X|F1)]
2|F2) ≥ [E(E(X|F1)|F2)]

2. Taking

expectations on both sides and using the tower property conclude the proof.

Geometrically, the distance from a fixed point to a vector space V (e.g., a plane) is no larger than the distance

from the same point to a linear subspace of V (e.g., any line within the plane).

Exercise 2. Define the conditional independence F1 ⊥ F2|G to hold if and only if

E(X1X2|G ) = E(X1|G ) · E(X2|G ), ∀X1 ∈ F1, X2 ∈ F2. (2)

Show that:

(i): F1 ⊥ F2|G if and only if (F1 ∨ G ) ⊥ F2|G , where F1 ∨ G := σ(F1 ∪ G ).

(ii): If G ⊂ F1, then F1 ⊥ F2|G if and only if E(X2|F1) ∈ G for ∀X2 ∈ F2.

Hints. (i): Direction ⇐ is trivial. Direction ⇒ requires π − λ theorem (first prove the statement for X1IG, where
X1 ∈ F1 and G ∈ G ).

(ii): Direction ⇐ is trivial (tower property). Direction ⇒ requires proving E(X2|F1) = E(X2|G ), using the

definition of conditional expectation.

Martingale

Exercise 3. {Xn} is a discrete-state Markov chain (with countable state space S) and transition probability matrix

P . If there exists a bounded function ψ : S → R such that∑
j∈S

Pijψ(j) = ψ(i), ∀i ∈ S, (3)

check that {Xn} is a martingale under the natural filtration.

A discrete-state Markov chain induces a difference operator L such that

(Lψ)(i) :=
∑
j∈S

Pijψ(j)− ψ(i), ∀i ∈ S. (4)
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What about a continuous-state Markov chain (e.g., Brownian motion)? That induces a differential operator on Rd,

which is one half the Laplacian ∆ :=
∑d

i=1
∂2

∂x2
i
. With time evolution of the Markov chain introduced, this provides

crucial connection between probability and PDE (generator, forward/backward equations).

Exercise 4. {Xn} is a sequence of i.i.d. r.v. with an unknown density f . The density f is known to be either p or

q (both are known and strictly positive), which results in a likelihood ratio testH0 : f = q

H1 : f = p
, (5)

with a test statistic

Yn :=

n∏
i=1

p(Xi)

q(Xi)
. (6)

Show that {Yn} is a martingale under the natural filtration of {Xn} if H0 is true.

The rejection region of this test: Yn ≥ a. The simplest example of sequential hypothesis testing (continue

collecting evidence until a conclusion can be drawn).

Does {Yn} admit a limit? If one terminates the test only when a rejection is made, can we control the probability

of rejecting H0 if H0 is true (type-I error)? Will be answered next week.

Exercise 5. A village contains N + 1 people, one of whom suffers from an infectious illness that cannot be cured.

St is the number of susceptibles at time t, It is the number of infectives and Dt is the number of deads such that

St + It +Dt = N + 1, while S0 = N, I0 = 1, D0 = 0.

Once a person is infected, his remaining lifespan is a random time that follows E(µ). Once a susceptible interacts

with an infective, he gets infected after a random time that follows E(λ). It is assumed that at any fixed time, any

two individuals within the system interact, and the random times are all independent.

(i): Specify the state space SX and the dynamics of the continuous-time discrete-state Markov chain (St, It).

(ii): Specify the generator G of (St, It).

(iii): If Gψ = 0 for some ψ : SX → R, show that Yt := ψ(St, It) is a martingale under the natural filtration of

{(St, It)}.
(iv): Find one such ψ(s, i) = α(s)β(i) that reveals the martingale structure of the epidemic model.

This epidemic model must result in one of the two situations: either everyone dies due to illness or the illness

dies out itself before infecting everybody. How to calculate the probability of those situations happening? Will also be

answered next week.

Hints. (i): SX = {(s, i) : s+ i ≤ N + 1, s ≥ 0, i ≥ 0}. Given (St, It) = (s, i), the next state transition is either a

death (s, i) → (s, i− 1) or an infection (s, i) → (s− 1, i+ 1).

The time until the next death is the minimum of the lifespan of each infective, which is the minimum of i

independent E(µ) r.v. Consequently, death rate DR(s,i) = iµ.

The time until the next infection is the minimum of is independent E(λ) r.v. (since each of the s susceptible

interacts with all i infectives). Consequently, infection rate IR(s,i) = isλ.
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Therefore, the holding rate of state (s, i) is i(µ + sλ). Whenever a state transition happens, there is iµ
iµ+isλ

probability transiting to (s, i− 1), there is isλ
iµ+isλ probability transiting to (s− 1, i+ 1).

(ii): By definition,

G(s,i),(s,i−1) = iµ, G(s,i),(s−1,i+1) = isλ, G(s,i),(s,i) = −i(µ+ sλ), (7)

while all other entries are zero.

(iii): Prove the martingale property within an infinitesimal interval [t, t+∆t].

(iv): Assume α(N) = 1 and solve Gψ = 0 to get

ψ(s, i) =

N∏
k=s+1

kBλ− (1−B)µ

kλB2
Bi, (8)

which is a valid solution for an arbitrary B > 0.

Remark. One obtains the freedom of choosing B > 0 in the example above that ensures

Yt =

N∏
k=St+1

kBλ− (1−B)µ

kλB2
BIt (9)

being a martingale.

As we shall see later, martingales have very nice structures and are the easiest stochastic processes to investi-

gate. Unfortunately, processes of general interests (e.g., branching processes, diffusions, asymmetric random walks)

are typically not martingales. This example shows how one should discover the hidden martingale structure to be

able to apply technical tools that are specifically designed for martingales (e.g., optional stopping theorem, maximal

inequalities, etc.). The martingale structure is crucial but never for free!
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Week 2

Concentration Inequality

Theorem (Azuma-Hoeffding). {Yn} is a martingale under filtration {Fn} and there exists a sequence of real numbers

{Kn} such that |Yn − Yn−1| ≤ Kn a.s. for ∀n. Then

P (|Yn − Y0| ≥ x) ≤ 2e
− 1

2
x2∑n

i=1
K2

i , ∀x > 0. (10)

Exercise 6. Given n objects with independent identically distributed random sizes X1, ..., Xn on [0, 1], let Bn be the

minimum number of bins (of size 1) required to pack X1, ..., Xn. Show that

P (|Bn − EBn| ≥ x) ≤ 2e−
1
2

x2

n , ∀x > 0. (11)

Hints. Set Fi := σ(X1, ..., Xi) and Yi := E(Bn|Fi) as a martingale. Prove |Yi+1 − Yi| ≤ 1 by considering the

minimum number of bins (of size 1) required to pack X1, ..., Xn without packing Xi (leave-one-out).

Exercise 7. Let Pi := (Ui, Vi) such that P1, ..., Pn are independent and uniformly distributed points in [0, 1]2. Let

Dn denote the length of the shortest tour that passes through each point exactly once and returns to the starting point.

Show that there exists a constant A > 0, such that

P (|Dn − EDn| ≥ x) ≤ 2e−
Ax2

log n , ∀x > 0. (12)

Hints. Set Fi := σ(P1, ..., Pi) and Yi := E(Dn|Fi) as a martingale.

Consider the leave-Pi-out shortest path that has length Dn(i). Note Dn(i) ≤ Dn ≤ Dn(i) + 2Zi for i ≤ n − 1,

where Zi is the shortest distance from Pi to one of the points in {Pi+1, ..., Pn} (why?). We derive |Yi − Yi−1| ≤
2max{E(Zi|Fi),E(Zi|Fi−1)}. Now prove that max{E(Zi|Fi),E(Zi|Fi−1)} ≤ C√

n−i
for some constant C > 0.
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Week 3

Application of OST

Exercise 8 (Doob’s Maximal Inequality). Let {Xn} be a sub-MG, prove that

P
(

max
1≤m≤n

Xm ≥ λ

)
≤

EX+
n Imax1≤m≤n Xm≥λ

λ
≤ EX+

n

λ
, ∀λ > 0. (13)

Hints. T := inf{n : Xn ≥ λ}, check that P (T ≤ n) ≤ EX+
T IT≤n

λ =
EX+

T∧n−EX+
n IT>n

λ . By OST, EX+
T∧n ≤ EX+

n .

Exercise 9. If {Xn} is a simple symmetric random walk, prove that: (i). {Xn} is a MG (ii). {X2
n − n} is a MG

(quadratic-MG) (iii). { eλXn

(coshλ)n } is a MG for ∀λ > 0, where coshλ := eλ+e−λ

2 (exponential-MG).

Let T be the first exit time of (a, b), where a < 0, b > 0 for a, b ∈ Z, i.e., T = inf{n : Xn = a or Xn = b}. Using

the MGs above, calculate P (XT = a) and ET .
Let T1 be the first hitting time to 1, find the distribution of T1.

Bonus: Can you find the distribution of T?

Hints. By OST, P (XT = a) = b
b−a and ET = −ab. PGF of T1 is EsT1 = 1−

√
1−s2

s .

To find the distribution of T , consider the MG Yn =
cos(λ(Xn− b+a

2 ))
cosn λ (subtract the midpoint b+a

2 to symmetrize the

exit time). By OST, E(cosλ)−T =
cos(λ b+a

2 )

cos(λ b−a
2 )

. To verify the validity of OST, apply DCT and check E(cosλ)−T < ∞
(prove by Fatou’s lemma).

Exercise 10. {Xn} is a simple asymmetric random walk with probability p stepping upward and probability q = 1−p
stepping downward. Let T be the first exit time of (a, b), where a < 0, b > 0 for a, b ∈ Z, i.e., T = inf{n : Xn =

a or Xn = b}. Calculate P (XT = a) and ET .

Hints. Yn =
(

q
p

)Xn

is a MG. Zn = Xn − (p− q)n is a MG.

Exercise 11. Consider the sequential hypothesis testing model in Example 4, show that {Yn} converges and identify

the limit. If one terminates the test iff the first rejection is made, provide an upper bound for the probability of type-I

error.

Hints. The limit is almost surely 1 if p = q, otherwise it’s 0 (Jensen).

Doob’s maximal inequality: P (supn Yn ≥ a|H0) ≤ 1
a .

Exercise 12. Consider the epidemic model in Example 5, calculate the probability that eventually there are still

people alive, i.e., the illness kills itself before infecting everyone.

Hints. T := inf{t : It = 0}. Use OST and find a clever way to specify B: consider Br such that rBrλ−µ(1−Br) = 0.

Plug into the OST for ∀1 ≤ r ≤ N to get a system of equations.
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Week 4

Practice Problems for Midterm Revision

Exercise 13. Let f : Z2 → R+ be any non-negative function such that

f(x, y) =
f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)

4
, ∀(x, y) ∈ Z2. (14)

Show that f must be a constant function.

Hints. Construct a martingale and apply martingale convergence theorem. Use recurrence/transience properties of

Markov chain if necessary.

Exercise 14. Let {Xn} be a symmetric simple random walk starting at 0 and T be the first exit time of (−a, a) for
a positive integer a. Compute ET 2.

Hints. Recall the computation of ET where we use the square martingale {X2
n − n} because the n term would

become T when applying OST. Therefore, we hope to construct a martingale that looks like f(Xn) + bn2 + cn for

some function f . Try the function f(Sn) = S4
n − 6nS2

n and figure out the values of b, c such that the martingale

property holds. Apply OST to yield ET 2 = 5a4−2a2

3 .

Exercise 15. Let {Zn} be a branching process with Z0 = 1. The offspring distribution has mean µ and variance

σ2 > 0. We wish to investigate the maximum population supn Zn that has ever appeared in the history when the

branching process is in its subcritical phase, i.e., µ < 1. For simplicity, we also assume that each individual has

positive probability of giving birth to more than two children, i.e., P (Z1 ≥ 2) > 0.

(i): Let G denote the probability generating function of Z1. Let η be the largest root of the equation x = G(x).

Show that η > 1.

(ii): Show that under the filtration Fn := σ(Z0, ..., Zn), Yn := ηZn is a martingale.

(iii): Show that E supn Zn ≤ η
η−1 .

Hints. For (iii), use the tail formula for expectation and apply Doob’s maximal inequality.

Exercise 16. Let {Xn} be an L2 martingale, i.e., Xn ∈ L2, ∀n under some filtration {Fn} such that X0 = 0.

Clearly, {X2
n} is a sub-martingale and admits a unique Doob’s decomposition

X2
n =Mn +An, (15)

where {Mn} is a martingale and {An} is a predictable increasing process with A0 = 0.

(i): Show that E supn |Xn|2 ≤ 4EA∞.

(ii): Fix any a > 0 and consider Ta := inf{n : An+1 > a2}. Show that Ta is a stopping time w.r.t. {Fn}.
(iii): Show that

P
(
sup
n

|Xn| > a

)
≤ P

(
A∞ > a2

)
+ P

(
sup
n

|Xn∧Ta | > a

)
, (16)

7
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where

P
(
sup
n

|Xn∧Ta | > a

)
≤ E(A∞ ∧ a2)

a2
. (17)

(iv): Use (iv) to show that E supn |Xn| ≤ 3E
√
A∞.

(v): Let T be the first hitting time to 1 of a simple symmetric random walk that starts from 0. Prove that

E
√
T = ∞.

Hints. For (i), apply Doob’s L2 inequality and use MCT.

For (iii), discuss if {Ta = ∞} happens and use Doob’s maximal inequality.

For (iv), use tail formula for expectation and apply Fubini’s theorem.

For (v), consider Doob’s decomposition of {Xn∧T } and reach a contradiction by DCT.

Remark. From optional stopping theorem, we prove that ET = ∞, while the exercise above proves a stronger

conclusion E
√
T = ∞. Actually, the continuous limit of this stopping time is the first hitting time to 1 of Brownian

motion, which follows an α-table law with α = 1
2 . This agrees with the current observation E

√
T = ∞.

8
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Week 6

Brownian Motion

Exercise 17. For 0 ≤ t0 < t1, calculate the probability that a standard BM has at least one zero in the time interval

(t0, t1).

Hints. Use Markov property of BM and condition on Wt0 . Relate to the distribution of the first hitting time of BM.

The answer is 2
π arccos

√
t0
t1
.

Exercise 18. Prove that ∀ε > 0, sups∈[0,ε]Ws > 0, infs∈[0,ε]Ws < 0 holds almost surely.

In addition, prove that a.s. ∀ε > 0, sups∈[0,ε]Ws > 0, infs∈[0,ε]Ws < 0. Think about the difference between two

arguments!

Hints. Use the last conclusion, and the path continuity of BM.

Exercise 19. Prove that, a.s., t 7→Wt is not monotone on any nontrivial interval.

Hints. Use Markov property and the conclusion above. Be careful with the location of a.s.

Exercise 20 (Brownian bridge). Consider Bt :=Wt− tW1 induced by a standard BM {Wt} on [0, 1]. What would be

a legal filtration that {Bt} is adapted to? Prove that {Bt} has the same finite-dimensional distribution as {Wt}|W1=0.

Proof. Filtration FB
t ≡ FW

1 , where FW is the natural filtration of {Wt}. Use the Gaussian process characterization

of BM.

Exercise 21 (Law of iterated logarithm). Let h(t) :=
√
2t log log t and {Wt} be a standard BM, with St :=

sups∈[0,t]Ws as the running supremum.

(i): Show that ∀t > 0, P
(
St > u

√
t
)
∼ 2

u
√
2π
e−

u2

2 (u→ ∞), where ∼ means asymptotic equivalence.

(ii): Let r, c ∈ R, 1 < r < c2. Consider P
(
Srn > ch(rn−1)

)
and show that lim supn→∞

Wt

h(t) ≤ 1 a.s.

(iii): Show that a.s. there exists infinitely many values of n such that

Wrn −Wrn−1 ≥
√
r − 1

r
h(rn). (18)

(iv): Prove the law of iterated logarithm

lim sup
n→∞

Wt

h(t)
= 1, lim inf

n→∞

Wt

h(t)
= −1 a.s. (19)

Hints. Note that St
d
= |Wt| and use Borel-Cantelli lemma.

Exercise 22. Let Ta be the first hitting time to a of a standard BM. Check that E|T |α < ∞ if and only if α < 1
2 .

Compare to the similar conclusion we have proved for SSRW. This is actually a consequence of Donsker’s invariance

principle.

9
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Week 7

BM and Stochastic Integration

Exercise 23. For a simple process {Xt} that is adapted to the BM natural filtration {Ft}, show that for Zt :=∫ t

0
Xs dWs,

⟨Z,Z⟩t =
∫ t

0

X2
s ds. (20)

Hints. Definition.

Exercise 24. For BM {Wt}, let St := sups∈[0,t]Ws be its running sup and define T := inf{t ≥ 0 :Wt = S1}.
(i): Use OST to prove that T is not a stopping time w.r.t. the BM natural filtration {Ft}.
(ii): Use strong Markov property to prove that T is not a stopping time w.r.t. the BM natural filtration {Ft}.

Hints. (i): Check T ≤ 1 a.s. so that ES1 = EWT = 0 implies S1 = 0 a.s.

(ii): Prove P (T = 1) = 0. Use the fact that BT
t :=Wt+T −WT =Wt+T − S1 is a BM.

Exercise 25 (Fake BM). Let {Bt}, {Wt} be BMs, G ∼ N(0, 1) and G, {Bt}, {Wt} be independent. Set

Yt :=

Bt t ∈ [0, 1]
√
t[B1 cos(Wlog t) +G sin(Wlog t)] t ≥ 1

, (21)

which is adapted to the filtration

Gt :=

σ(Bs, ∀s ∈ [0, t]) t ∈ [0, 1]

σ(B1, G,Ws, ∀s ∈ [0, log t]) t ≥ 1
. (22)

(i): Compute the marginal distribution of Yt for each t ≥ 0.

(ii): Prove that {Yt} is a continuous MG under {Gt}.
(iii): Show that {Yt} is not a BM.

This is an example of a mimicking process, which replicates the marginal distribution but not the joint distribution

of the process.

Hints. (i): Calculate c.f. ϕYt
(s). Yt ∼ N(0, t).

(ii): Definition. Use E cos(Wlog t) =
1√
t
by taking real parts for the Gaussian c.f.

(iii): Prove by contradiction that Ye −Y1 is not Gaussian. Calculate c.f. ϕYe−Y1
(s) = e−

1
2 (e+1)s2 ·Ees2

√
e cos(W1).

If Ye − Y1 is Gaussian, Ees2
√
e cos(W1) = ecs

2

for some c ∈ R. Using Jensen’s inequality (strict) for E
(
e
√
e cos(W1)

)4

produces a contradiction.
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