BM , finite-dim dist sample path continuity Path regularity is crucial in cts-time setting. $e.g: \mathcal{D} = [o_1], \quad \mathcal{G} = \mathcal{B}_{[o_1]}, \quad |P = \lambda,$ $X_{t}(\omega) = I_{\{t=\omega\}}, Y_{t}(\omega) = 0$ for $t \in [0, j]$. In this case, $\forall t \in [0,1]$, $Y_t(w)$ is constantly zero but X+(w) is only non-zero at w=t, then Xt = Yt a.s. since any single real number has zero Lebesgue measure. However, (Xt) always has the sample path while $\{X_t\}$ does not, $P(\underset{t\in[a]}{\sup} X_t = 0) = 0$, $P(\underset{t\in[a]}{\sup} Y_t = 0) = 1$. Fix w: Xt _____ Y_t

$$\underbrace{\mathcal{B}}_{+}: \forall \varepsilon > 0, \quad |P(X_{t} > \varepsilon, X_{t+\frac{1}{2}} < -\varepsilon) \\ = |P(X_{t} > \varepsilon) \cdot |P(X_{t+\frac{1}{2}} < -\varepsilon) \\ = \left[\overline{\Phi}(-\varepsilon) \right]^{2} \xrightarrow{\times} 0 \quad (n \to \infty)$$

which wears there's always positive prob that Xt and Xt+th are far enough even for largen.

Back to BM: sample path ats is from
Kolmogorov's lemma (sample path at Hölder ats
for
$$\forall x \in (0, \pm)$$
)
Check: $\{W_t^2 - t\}$ is MG, $\{e^{\lambda W_t - \frac{1}{2}\lambda^2 t}\}$ is MG
und
 e^{xp} .
Can they be generalized? Actually,
 $\{W_t^2 - t = W_t^2 - \langle w, w \rangle_t$
 $quad var
 $until time t$
 $e^{\lambda W_t - \frac{1}{2}\lambda^2 t} = e^{\lambda W_t - \frac{1}{2}\langle \lambda w, \lambda w \rangle_t}$
 $until time t$
Stochectic
exponential
 $e(\lambda w)_t$$

2. Let G be a standard normal random variable and $(W_t, 0 \le t < \infty)$ another standard Brownian motion. Assume that G, (B_t) and (W_t) are independent and then define the process $(Y_t)_{t\geq 0}$ by

- (a) Compute the marginal distribution of Y_t for every $t \ge 0$ (*Hint:* for $t \ge 1$ compute the characteristic function of Y_t by conditioning on $W_{\log t}$).
- (b) Explain why $(Y_t, t \ge 0)$ is a continuous martingale with respect to its own filtration:

$$\mathcal{G}_t := \begin{cases} \sigma\{B_s, 0 \le s \le t\}, & 0 \le t \le 1, \\ \sigma\{B_1, G, (W_s, 0 \le s \le \log t)\}, & t > 1. \end{cases}$$

You do not have to be fully rigorous in this part, and may rely on the fact that one can generalize the exponential martingales to the complex plane C: for any real constant $c \in I\!\!R$, $(e^{icB_t + \frac{c^2}{2}t}, 0 \le t < \infty)$ is a complex-valued martingale .

(c) Show that despite parts (a)-(b) the process $(Y_t, t \ge 0)$ is NOT a Brownian motion! (*Hint:* show that $Y_e - Y_1$ is not Gaussian). This is an example of a *fake* Brownian Motion.

So
$$P_{Y_4}(s) = IE\left[e^{-\frac{1}{2}s^2t}\right] = e^{-\frac{1}{2}s^2t}$$

so $Y_t \sim N(o, Jt)$.

(b): ∀t>s≥o, when t,s both ≤1, obrious. When $t > 1 \ge S$, $IE(T_t | S_s) = JE(IE[B_1 cos(W_{1}g_t)])$ $G \ge W$, indep of S_s $+ IE[G sm(W_{1}g_t)])$ IEG =0, =0. = JF. [IE (B, -Bs)cos(Wigt) + IE[Bs cos(Wigt)] = f_{E} . (IE(B₁-B₅) · IEcos(Wigt) + B₅ · IE(c-s(Wigt)) = JE. B. <u>IE cos(Wigt)</u> eis Wigt Non $p_{W_{logt}}(s) = e^{-\frac{1}{2}(logt) \cdot S^2}$, plug m = 1IE e^{2.Wigt} = e^{-1/2} lost, take real parts, $|E\cos(W_{1}g_{t}) = t^{-\frac{1}{2}}$, so $|E(Y_{t}| - \beta_{s}) = B_{s}$

When
$$\forall t \ge s > 1$$
,
 $IE(Y_t|G_s) = JE \cdot \left[B_1 \cdot IE \left[\cos(W_{1}g_t) \mid G_s \right] + G \cdot IE \left[\sin(W_{1}g_t) \mid G_s \right] \right]$

- So: $|E[cos(W_{1gt})|G_{s}] = \int \frac{1}{2} \cdot cos(W_{1gs})$ $|E[sm(-+)] = \int \frac{1}{2} \cdot sm(-+)$
 - 50; IE (Yel 45)=Ys

$$\begin{aligned} (c): Y_{e}-Y_{1} &= Je \cdot \left[B_{1} \cdot cos(W_{1}) + G_{1} \cdot sm(W_{1})\right] \\ &= \left[Je \cos(W_{1}) - 1\right]B_{1} + Je \cdot G_{1} \cdot sm(W_{1}) \\ &= \left[Je \cos(W_{1}) - 1\right]B_{1} + Je \cdot G_{1} \cdot sm(W_{1}) \\ &\neq Y_{e}-Y_{1}(s) = IE\left(IE\left(e^{is(Y_{e}-Y_{1})}\right|W_{1}\right)\right) \\ &= IE\left(e^{is(Je\cos(k-1))\cdot B_{1}} \cdot e^{isJeG_{1}\cdot smk}\right|W_{1}=k) \\ &= IE\left(e^{is(Je\cos(k-1))\cdot B_{1}} \cdot IE\left(e^{isJeG_{1}\cdot smk}\right) \\ &= e^{-\frac{1}{2}s^{2}(Je\cos(k-1))^{2}} \cdot e^{-\frac{1}{2}(Je\sin(k)^{2}\cdot s^{2})} \\ &= e^{-\frac{1}{2}s^{2}} \cdot \left[\left(Fe\cos(k-1)^{2} + \left(Fe\sin(k)^{2}\right)\right) \\ &= e^{-\frac{1}{2}s^{2}} \cdot \left(Fe\cos(k-1)^{2} + \left(Fe\sin(k)^{2}\right)\right) \\ &= e^{-\frac{1}{2}s^{2}} \cdot \left(Fe\cos(k-1)^{2} + \left(Fe\sin(k)^{2}\right)\right) \end{aligned}$$

$$= e^{-\frac{1}{2}s^{2} \cdot (e+1)} \cdot \underline{|E[e^{s^{2}J\overline{e}\cos W_{1}}]}$$
Assume $Y_{e}-Y_{1}$ is Gaussion, then

$$\exists \delta^{2} \ge 0, \quad |E|e^{s^{2}J\overline{e}\cos W_{1}} = e^{-\frac{1}{2}\delta^{2}s^{2}}$$
if this is true,

$$|E|e^{4J\overline{e}\cos W_{1}} = |E|(e^{J\overline{e}\cos W_{1}})^{4}$$

$$(s=2) \quad ||$$

$$(e^{-2\delta^{2}}) \quad (|E|e^{J\overline{e}\cos W_{1}})^{4}$$

$$|| \quad (s=1)$$

$$(e^{-\frac{1}{2}\delta^{2}})^{4} = (e^{-2\delta^{2}})$$
So: from c.f., $Y_{e}-Y_{1}$ not Gaussian,

(Yx) not BM!