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Week 1

Elements of Measure Theory

The measure-based probability theory is established on a probability space (Ω,F ,P). It consists of the sample

space Ω, the sigma field F (definition?) on Ω, and the probability measure P : F → [0, 1]. The probability measure

satisfies the axioms of probability (definition?), which contains the essential ”countable additivity”. Within this

framework, a random variable X : Ω → R is just a mapping ω 7→ X(ω) that is F -measurable, i.e., {ω : X(ω) ∈ B} ∈
F , ∀B ⊂ R Borel.

The Borel sigma field, denoted BR, is the collection of all Borel measurable subsets of R. Mathematically

speaking, it is defined as BR := σ(Q), where Q := {(a, b] : a, b ∈ R} is a π-system. That is the reason the CDF

is defined as FX(x) = P (X ≤ x). To connect the CDF with the distribution/law of the r.v., we define the law

of X, denoted µX , as the probability measure on (R,BR) induced by X: µX(B) = P (X ∈ B) for any Borel set

B ∈ BR. The following exercise proves that the CDF characterizes the law of a random variable, which is a standard

application of the π − λ theorem.

Exercise 1. Given µ, ν as two probability measures on (Ω,F ), and Q is a π-system such that σ(Q) = F . If

µ1(A) = µ2(A) for ∀A ∈ Q, prove that µ1(A) = µ2(A) for ∀A ∈ F .

Consequently, prove that if µX , µY are the laws of r.v. X and Y , then FX ≡ FY iff µX(B) = µY (B) for ∀B ∈ B.

Hint. Consider H := {A ∈ F : µ1(A) = µ2(A)} and prove that it is a λ-system.

The next core topics are integration and the convergence theorems. By definition, the expectation EX :=∫
Ω
X(ω) dP(ω) is nothing else but the Lebesgue integral of the r.v. (measurable function) X. By a simple change of

variable x = X(ω), we recover the important identity EX =
∫
R x dµX(x) (prove it on your own). The key insight

from the Lebesgue integration is that the behavior of the function on any zero-Lebesgue-measure set can be neglected,

which naturally motivates the definition of ”almost sure” and ”almost everywhere” in measure theory. Any pointwise

properties that are required to prove some relationships of Lebesgue integrals can be reduced to almost sure/almost

everywhere properties without any costs.

One of the key problems w.r.t. the integration is when one has a sequence of random variables Xn and Xn
a.s.→

X(ω) (n → ∞) (pointwise can be reduced to almost sure convergence since neglected by the Lebesgue integral). We

hope to understand under what conditions EXn → EX (n → ∞) holds, i.e. the interchange of the limit and the

integration is allowed. Three most important convergence theorems provide the sufficient conditions: (please check)

• Monotone convergence theorem (MCT): Xn ≥ 0 a.s. for ∀n, ω ∈ Ω, and Xn is a.s. increasing in n.

• Dominated convergence theorem (DCT): supn |Xn| ≤ Y a.s., and EY < ∞.

• Bounded convergence theorem (BCT): supn |Xn| ≤ M a.s., where M ∈ R.

If one has a weaker condition (e.g., only non-negativity but no monotonicity), it is possible to derive a weaker

conclusion, stated by the Fatou’s lemma (please check).
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The next important concept is the Radon-Nikodym derivative, which often comes up when studying conditional

expectation. The problem of interest is that, when having two probability measures P,Q on the same measurable

space (Ω,F ), if the following representation exists:

P(A) =

∫
A

f(ω) dQ(ω), ∀A ∈ F , (1)

for some measurable function f : Ω → R. As a necessary condition, for any A ∈ F such that Q(A) = 0, it holds

that P(A) = 0. We call this property the absolute continuity of P w.r.t. Q, denoted P << Q. Amazingly, this is also

the sufficient condition! The Radon-Nikodym theorem states that, if P << Q for two probability measures (actually

σ-finite, so it applies for λ, the Lebesgue measure on R), then such measurable function f must exist and is almost

surely unique such that equation (1) holds. We call such a function f the Radon-Nikodym derivative and denote it

by dP
dQ . The following exercise states some fundamental properties of the RN-derivative.

Exercise 2. Argue that dP
dQ is actually a r.v. on the probability space (Ω,F ,Q). Check that EQ

dP
dQ = 1, where EQ

denotes the expectation under measure Q.

If dP
dQ > 0, Q− a.s., prove that dQ

dP exists and that dQ
dP = 1

dP
dQ

under both P− a.s. sense and Q− a.s. sense.

Hint. To identify dQ
dP , use the almost sure uniqueness of the RN-derivative.

Why does the notation of the RN derivative look like a differential between two measures? The following exercise

provides the intuition.

Exercise 3. For disjoint sets A ∈ F and ∆A ∈ F (understood as the perturbation in A), calculate P(A∪∆A)−P(A)
Q(A∪∆A)−Q(A) .

Prove that this difference quotient is equal to f(ω0) if ∆A = {ω0} and Q({ω0}) > 0.

Argue intuitively that P(A∪∆A)−P(A)
Q(A∪∆A)−Q(A) → f(∆A) as Q(∆A) → 0, which is interpreted as the relative rate of change

in the measure when A receives an infinitesimal perturbation.

Hint. Definition.

The Lebesgue decomposition theorem implies that for the law µX of r.v. X, there exists a unique decomposition

of the law µX = µ+ ν such that µ << λ (absolute continuous w.r.t. Lebesgue measure) and ν ⊥ λ (singular w.r.t.

Lebesgue measure). We say ν ⊥ λ if there exists disjointA,B ∈ B such that A∪B = R, but ν(A) = λ(B) = 0. This

provides the classification of random variables into discrete, continuous, and singular r.v. In some sense, that is why

probability densities and probability mass functions are both called ”likelihood” in statistics.

Exercise 4. Consider the probability space (Ω = [0, 1],F = B[0,1],P = λ), where λ is the Lebesgue measure.

If X(ω) =

0 if ω < 1
2

1 if ω ≥ 1
2

, find out µ, ν in the Lebesgue decomposition of µX (discrete).

If X(ω) = ω, find out µ, ν in the Lebesgue decomposition of µX (continuous).

Show that there exists a Borel measurable set C which is uncountable, but has zero Lebesgue measure. Consider

r.v. X that is supported on C. Prove that µ ≡ 0 in the Lebesgue decomposition of µX . This is neither a discrete r.v.

nor a continuous r.v. (singular).

3
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Hint. Consider Cantor set C.

After clearing up those concepts for a single r.v., we start to talk about random vectors, most importantly, the

concept of independence between two r.v. X and Y . The independence of X and Y is defined as the independence

between sigma fields σ(X) and σ(Y ). Two sigma fields A ,B are defined to be independent if

P (A ∩B) = P (A)P (B) , ∀A ∈ A , B ∈ B. (2)

The following theorem is again an application of the π − λ theorem.

Exercise 5. Q,R are π-systems and subsets of F . If Q,R are independent, then σ(Q), σ(R) are independent.

Consequently, prove that X,Y are independent iff P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y), ∀x, y ∈ R.

Hint. Fix A ∈ Q, consider HA := {B ∈ σ(R) : P (A ∩B) = P (A)P (B)} and prove Q, σ(R) are independent. Then

fix B ∈ R and perform the similar argument once more.

To build a larger probability space where two (finitely many) random variables on (Ω1,F1,P) and (Ω2,F2,Q) can

live, one sets the sample space as Ω1×Ω2 and wishes to build a sigma field F1⊗F2 on Ω1×Ω2. The procedure is similar

to that in one dimension, except setting F1 ⊗ F2 := σ(Q), where the π-system Q := {A×B : A ∈ F1, B ∈ F2}
is the collection of measurable rectangles. F1 ⊗ F2 is called the product sigma field, which is typically larger than

F1×F2. Concerning the product probability measure P⊗Q : F1⊗F2 → [0, 1], it is also only defined on Q through

(P⊗Q)(A× B) := P(A) ·Q(B) and later extended to the whole F1 ⊗ F2. That is the construction of the product

probability space (Ω1 ×Ω2,F1 ⊗F2,P⊗Q). Actually, Kolmogorov’s extension lemma guarantees the conclusion for

uncountably many r.v., provided the consistency condition.

As the last topic, we shall talk about Fubini’s theorem when it comes to double integration/summation. If P,Q
are both sigma finite measures, the key condition is that either the integrand f is a.s. non-negative or integrable,

i.e.,
∫
Ω1×Ω2

|f(ω1, ω2)| d(P⊗Q)(ω1, ω2) < ∞. Under this, one can interchange the order of integration, i.e.∫
Ω1×Ω2

f(ω1, ω2) d(P⊗Q)(ω1, ω2) =

∫
Ω2

∫
Ω1

f(ω1, ω2) dP(ω1) dQ(ω2) =

∫
Ω1

∫
Ω2

f(ω1, ω2) dQ(ω2) dP(ω1). (3)

The following exercise is one of the most important implications of Fubini’s theorem to keep in mind.

Exercise 6. Prove E|X|p =
∫∞
0

pyp−1P (|X| > y) dy for ∀p > 0.

Hint. Apply Fubini’s theorem using |x|p =
∫ |x|
0

pyp−1 dy.
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Week 2

Almost Sure and Convergence in Probability

The following exercise tests the understanding on almost sure and convergence in probability.

Exercise 7. Consider the probability space ([0, 1],B[0,1], λ), on which there exists a sequence of random variables

Xn(ω) := I(0, 1
n )(ω). Judge if this sequence of r.v. converges a.s./in probability, and identify the limit.

Repeat the exercise for a sequence of independent r.v. Yn on the same probability space such that Yn
d
= Xn, ∀n.

Hint. {Xn} converges almost surely but not {Yn}. Independence matters.

Exercise 8 (Convergence for i.i.d. r.v.). Refer to Lemma 14 (1), (3) in 2024 notes.

5
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Week 3

Convergence Mode, Uniform Integrability

Exercise 9. Let {Xn} be i.i.d. random variables following E(1), and Mn := max1≤i≤n{Xi}, show that

Mn

log n

a.s.→ 1 (n → ∞). (4)

Note that we have already proved lim supn→∞
Xn

logn = 1 a.s. in the homework.

Hint. Prove the following conclusions under the almost sure sense: lim supn→∞
Mn

logn ≥ 1, lim supn→∞
Mn

logn ≤ 1,

lim infn→∞
Mn

logn ≥ 1, among which the first one is obvious.

To prove lim supn→∞
Mn

logn ≤ 1, split the maximum w.r.t. n terms into the first N terms (finitely many) and the

tail n−N terms (infinitely many). Use lim supn→∞
Xn

logn = 1 to bound the tail part.

To prove lim infn→∞
Mn

logn ≥ 1, apply Borel-Cantelli and prove ∀ε ∈ (0, 1),
∑∞

n=1 P
(

Mn

logn < 1− ε
)
< ∞.

Exercise 10. Show that

d(X,Y ) := E
|X − Y |

1 + |X − Y |
(5)

is a metric on the space of random variables (the equality is under almost sure sense). Show that Xn
p→ X (n → ∞)

iff d(Xn, X) → 0, which shows that convergence in probability can be embedded into a metric space.

Hint. The triangle inequality of d follows from the fact that x 7→ x
1+x is increasing. The equivalence in convergence

follows from BCT and Markov inequality.

Exercise 11. Show that for 1 ≤ p < q ≤ ∞, Lq convergence implies Lp convergence.

Hint. Holder’s inequality.

Exercise 12. Check that for Xn ≡ X, {Xn} is U.I. iff X ∈ L1. This provides the motivation of the def of U.I.

If X ∈ L1, prove that ∀ε > 0, ∃δ > 0, such that for any A ∈ F ,P (A) < δ, E|X|I|X|∈A < ε holds.

Hint. By Cauchy principle, ∀ε > 0, ∃M > 0 such that
∫
|X(ω)|≥M

|X(ω)| dP(ω) < ε
2 .

Exercise 13. If {Xn} and {Yn} are U.I., show that {Xn + Yn} is U.I.

Hint. Definition.

Exercise 14. Show that {Xn} is U.I., if one of the following conditions holds:

(1): (moment) exists ε > 0, such that supn E|Xn|1+ε < ∞.

(2): (dominated) exists Y ∈ L1, such that supn |Xn| ≤ Y a.s..

Explain why condition (1) cannot be weakened to supn E|Xn| < ∞.

Hint. Part (1): consider E |Xn|
|Xn|1+ε |Xn|1+εI|Xn|≥λ. Use the fact that x

x1+ε → 0 (x → +∞) to connect with the moment

condition. Part (2): by definition.

Counterexample: Xn(ω) = nI(0, 1
n )(ω). Contradiction follows from Vitali’s convergence theorem.

6
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Week 4

WLLN

Exercise 15. Let {Xn,k}1≤k≤n be a lower triangular array of r.v. such that each row consists of independent r.v.

If there exists a sequence of positive {bn} such that:

1.
∑n

k=1 P (|Xn,k > bn|) → 0 as n → ∞,

2.
∑n

k=1 EX2
n,kI|Xn,k|≤bn

b2n
→ 0 as n → ∞,

then
Sn − an

bn

p→ 0 (n → ∞), (6)

where Sn :=
∑n

k=1 Xn,k and an :=
∑n

k=1 EXn,kI|Xn,k|≤bn .

Hint. Set the truncation Yn,k := Xn,kI|Xn,k|≤bn and consider Tn :=
∑n

k=1 Yn,k. First prove P (Sn ̸= Tn) → 0 as

n → ∞. Then apply Chebyshev’s inequality for Tn.

Exercise 16. {Xn} is a sequence of i.i.d. r.v. following the distribution

P
(
X1 = 2j

)
= 2−j , ∀j ≥ 1. (7)

Let Sn :=
∑n

i=1 Xi. Prove that lim supn→∞
Xn

n log2 n = ∞ a.s. while Sn

n log2 n

p→ 1 as n → ∞. This example illustrates

the difference between almost sure convergence and convergence in probability.

Hint. The almost sure part follows from a standard Borel-Cantelli argument.

The convergence in probability part follows from the WLLN above. Consider the form bn := 2mn such that
n
bn

→ 0 as n → ∞ (check two conditions above). One example would be bn = n log2 n and an = nmn = n log2 n +

n log2 log2 n.

Exercise 17 (An unfair ”fair” game). {Xn} is a sequence of i.i.d. r.v. following the distribution

P (X1 = −1) = p0, P
(
X1 = 2k − 1

)
= pk, ∀k ≥ 1, (8)

where pk := 1
2kk(k+1)

, ∀k ≥ 1 and p0 := 1−
∑

k≥1 pk. Let Sn :=
∑n

i=1 Xi, prove that

Sn
n

log2 n

p→ −1 (n → ∞). (9)

Compare with the conclusion you can draw by directly applying SLLN. What can you observe?

Hint. Apply the WLLN above. Consider bn := 2mn where mn := inf
{
m ∈ N : 2−mm− 3

2 ≤ 1
n

}
.

7
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Week 5

Applications of SLLN

Exercise 18 (Empirical CDF). Given i.i.d. samples {Xn}. Assume X1 has CDF F . Define

Fn(x) :=
1

n

n∑
i=1

IXi≤x (10)

as the empirical CDF. Show that for any fixed x ∈ R, Fn(x)
a.s.→ F (x) (n → ∞). Calculate Var(Fn(x)). Based on

those conclusions, construct a 95%-pointwise confidence band (interval) for Fn(x) when n → ∞. Look at numerical

experiments in Figure 1, what do you think is a possible problem for this confidence band?

Hints. Apply SLLN, Var(Fn(x)) = F (x)[1−F (x)]
n . By CLT, Fn(x)−F (x)√

F (x)[1−F (x)]
n

d→ N(0, 1) (n → ∞) for any fixed x ∈ R.

By Slutsky’s theorem, Fn(x)−F (x)√
Fn(x)[1−Fn(x)]

n

d→ N(0, 1) (n → ∞) for any fixed x ∈ R (the true F is unknown). Hence the

95%-confidence band is Fn(x)± Z0.025

√
Fn(x)[1−Fn(x)]

n .

Figure 1: Confidence Band of Empirical CDF
Red line denotes F , the CDF of N(0, 100). Blue line denotes a sample of Fn. Yellow line denotes the corresponding

95%-upper confidence band of Fn. Green line denotes the corresponding 95%-lower confidence band of Fn.

Exercise 19 (Dvoretzky-Kiefer-Wolfowitz). P (supx |Fn(x)− F (x)| > ε) ≤ 2e−2nε2 ,∀ε > 0.

Hints. This result is highly non-trivial, don’t try to prove it on your own! Check this if interested.

Exercise 20 (Glivenko-Cantelli). Prove supx |Fn(x)−F (x)| a.s.→ 0 (n → ∞). What’s the difference between this and

the first conclusion? Rebuild the 95%-confidence band according to DKW. Look at numerical experiments in Figure 2,

8
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is that better?

Hints. Borel-Cantelli. This conclusion is uniform in x. Set 0.05 = 2e−2nε2 so that ε =
√
− 1

2n log 0.025, the 95%-

uniform confidence band is
[
0 ∨ Fn(x)−

√
− 1

2n log 0.025, 1 ∧ Fn(x) +
√
− 1

2n log 0.025
]
.

Figure 2: Uniform Confidence Band of Empirical CDF
Red line denotes F , the CDF of N(0, 100). Blue line denotes a sample of Fn. Yellow line denotes the corresponding
95%-upper uniform confidence band of Fn. Green line denotes the corresponding 95%-lower uniform confidence

band of Fn.

Exercise 21 (Entropy). Let {Xn} be i.i.d. sequence of letters taking values in {1, 2, ..., r}, pk := P (X1 = k) > 0.

For a randomly typed letter sequence X1...Xn, let πn :=
∏n

i=1 pXi
denote the probability of observing such a sequence.

Prove − log πn

n

a.s.→ H := −
∑r

k=1 pk log pk (n → ∞), the limit is defined as the entropy of the distribution, measuring

how chaotic/random the distribution is.

Hints. SLLN.

Exercise 22. Calculate the discrete distribution supported on {1, 2, ..., n} that has the maximum entropy.

Hints. Use Lagrange multiplier. The uniform distribution.

Exercise 23. Calculate the discrete distribution supported on {1, 2, ..., n} that has the maximum entropy and also

exhibits the conservation of energy, i.e.,
∑n

i=1 piEi = U .

Hints. Use Lagrange multiplier. The Boltzmann distribution w.r.t. energy levels E1, ..., En.

Exercise 24. Calculate the continuous distribution that has the maximum entropy, subject to a zero mean and a

unit variance.

Hints. Require the calculus of variation. N(0, 1).

9
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Week 6

Weak Convergence

Exercise 25. Prove that the Levy metric between two CDFs F and G

d(F,G) := inf {δ > 0 : F (x− δ)− δ ≤ G(x) ≤ F (x+ δ) + δ, ∀x ∈ R} (11)

is indeed a metric.

Hints. First prove symmetricity. Then use symmetricity and right-continuity of CDF to prove positivity. Finally

prove triangle inequality by using the definition of the infimum in Levy metric.

Exercise 26. Prove that Fn
d→ F iff d(Fn, F ) → 0 as n → ∞.

Hints. One direction is obvious by setting n → ∞. For the other direction, cut the real line at points x1 < ... < xk ∈
C(F ) such that the spacing is less than ε and the probability mass left outside [x1, xk] is less then ε. Prove that in

this case d(Fn, F ) < 2ε.

Exercise 27. Discuss for different convergence modes if Xn → X implies that {Xn} and X live in the same

probability space? Try to construct an example if the answer is negative. How shall we understand the Skorohod

theorem?

Hints. Negative for weak convergence.

Exercise 28 (Slutsky). If Xn
d→ X and Yn

d→ c ∈ R, prove (Xn, Yn)
d→ (X, c) as n → ∞. Use this to show that the

T-statistic Tn := X−µ
S√
n

for i.i.d. samples X1, ..., Xn with mean µ and variance σ2 is asymptotically Gaussian, i.e.,

Tn
d→ N(0, 1) as n → ∞.

Hints. Definition of weak convergence.

10
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Week 8

Conditional Expectation

Keep in mind the definition of conditional expectation of X ∈ L1(Ω,F ,P), where G ⊂ F :

1. E(X|G ) ∈ G

2. ∀A ∈ G ,E(XIA) = E(E(X|G ) · IA)

Those two properties actually characterize CE, due to the almost sure uniqueness of CE as a consequence of

Radon-Nikodym theorem. This is crucial in proving the properties of CE.

Exercise 29. Check that µ(A) := E(XIA) is a finite signed measure on the measurable space (Ω,G ) if X ∈ L1.

Check that µ << P on (Ω,G ) and show that E(X|G ) = dµ
dP

∣∣∣
G
. CE is almost surely unique under what sense?

Hints. The countable additivity comes from DCT. CE is P|G − a.s. unique.

Exercise 30. Let Y ∈ L1(Ω,F ,P), and X1, X2 are independent r.v.s such that X2 is independent of Y . Prove that

E(Y |X1, X2) = E(Y |X1) under the almost sure sense.

Hints. Firstly, E(Y |X1) ∈ σ(X1, X2), only need to prove ∀A ∈ σ(X1, X2),E(Y IA) = E(E(Y |X1)IA) by definition.

First prove this property holds for measurable rectangles A = B × C ∈ R, where B ∈ σ(X1), C ∈ σ(X2).

Then notice that σ(X1, X2) = σ(R) and apply π − λ theorem to conclude the proof.

Exercise 31 (CE for a given value). Show that there exists a Borel measurable function h : R → R such that

E(Y |X) = h(X). Define E(Y |X = x) :=
∫
y
f(X,Y )(x,y)

fX(x) dy if the density functions exist, Y ∈ L1 and fX(x) ̸= 0.

Show that E(Y |X = x) = h(x). What does this proposition tell us?

Hints. The first result follows directly from E(Y |X) ∈ σ(X).

Denote g(x) :=
∫
y
f(X,Y )(x,y)

fX(x) dy and it suffices to show that E(Y |X) = g(X). Use the definition of CE to

conclude the proof.

Exercise 32 (Borel Paradox). Consider X1, X2 i.i.d. having exponential distribution with mean θ. If X2 is observed,

what is the maximum likelihood estimator (MLE) for θ?

Now consider Z := X2−1
X1

, calculate the joint density of (X1, Z) and the marginal density of Z.

Suppose one observes X2 = 1, and notice that {X2 = 1} = {Z = 0}. Compare the two MLEs for θ derived from

the observation of X2 and Z respectively. What do you observe? Why is this happening?

Hints. θ̂ = X2 if X2 is observed. The joint density f(X1,Z)(x, z) =
x
θ2 e

− 1+x+xz
θ (x > 0, 1 + xz > 0) and the marginal

density is

fZ(z) =

(1 + z)−2e−
1
θ z ≥ 0

(1+z−θz)e
1+z
θz +θz

θz(1+z)2 e−
1
θ z < 0

. (12)

When X2 = 1 is observed, the first MLE gives θ̂ = 1 while the second MLE through Z gives θ̂ = +∞ even if

{X2 = 1} = {Z = 0}. This is because the zero measure event {X2 = 1} can be approximated in different ways.

11
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Week 9

Tightness

We first motivate the discussion on tightness.

Exercise 33. Check that Xn ∼ U(−n, n) does not weakly converge to any probability distribution.

Intuitively speaking, why does this happen?

Hints. By definition. The probability mass escapes to infinity!

Definition. A sequence of CDFs {Fn} are called tight if ∀ε > 0, ∃M = M(ε) > 0 such that Fn(−M)+1−Fn(M) <

ε, ∀n. Note that M is uniform w.r.t. n.

Exercise 34. Check that Xn ∼ U(−n, n) is not tight.

Hints. Check P (|X2M | ≥ M) = 1
2 .

The following Prokhorov’s theorem is the core of tightness arguments.

Theorem (Prokhorov’s Theorem). A sequence of CDFs {Fn} is tight iff it is sequentially compact under the weak

convergence, i.e., there exists a subsequence {Fnk
} such that Fnk

weakly converges to a CDF F as k → ∞.

Proof. Helly’s selection lemma: for a sequence of CDFs {Fn}, there always exists a subsequence {Fnk
} such that

Fnk
weakly converges to F , which is non-decreasing, right-continuous and 0 ≤ F ≤ 1 (but not necessarily a CDF).

This follows from a diagonalization argument based on a countable dense subset Q in R.
Then prove that tightness is equivalent to maintaining the mass, i.e., F (+∞)− F (−∞) = 1.

We illustrate how to apply Prokhorov’s theorem with the following exercises.

Exercise 35. Levy’s continuity theorem has two directions, one of which is obvious. We wish to prove the harder

direction of Levy’s continuity theorem. If for a sequence of r.v.s {Xn}, the c.f. converges pointwisely ϕXn
(t) →

ϕ(t), ∀t ∈ R and ϕ is continuous at 0, then ϕ is the c.f. of some r.v. X and Xn converges weakly to X.

You may use the conclusion that the continuity of ϕ at 0 implies the tightness of {Xn} (which can be proved).

Calculate the c.f. of U(−n, n), show that the pointwise limit of the c.f. exists but is not continuous at 0.

Hints. Apply Prokhorov’s theorem for any subsequence {Xnk
} of {Xn}. Argue that the weak limit must have c.f.

ϕ. ϕU(−n,n)(t) =
sin(nt)

nt .

Exercise 36. A sequence of r.v.s {Xn} have c.f. ϕXn(t). Prove that Xn converges weakly to zero iff ∃δ > 0, ∀|t| < δ,

ϕXn(t) → 1 as n → ∞.

Hints. Levy’s continuity theorem implies tightness. Use the property that if ϕ(t) = 1+o(t2) as t → 0 then ϕ ≡ 1.

Exercise 37 (A Challenging Problem). A sequence of non-negative r.v.s {Xn} satisfy EXα
n → 1, EXβ

n → 1 for

0 < α < β. Show that Xn
p→ 1 as n → ∞.

Hints. Apply Prokhorov’s theorem for any subsequence {Xnk
} of {Xn}, whose weak limit is identified as X.

Prove that EXα = EXβ = 1, which implies that X = 1 a.s.
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