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This note contains extra exercises, examples and materials for PSTAT 213. The notes may be

subject to typos, and you are welcome to email me at hzhou593@ucsb.edu for any possible advice.

Week 1

Example for Indicator

Lemma 1 (Example). The indicator IA of event A is a random variable defined as

IA(ω) =

1 if ω ∈ A

0 else
(1)

(a): Write PMF for X = IA and calculate EX,V ar(X), GX(s).

(b): For random variable Y ≥ 0 and ϕ as any non-negative increasing function on [0,+∞), show that ∀a >

0, ϕ(a) · P (Y ≥ a) ≤ Eϕ(Y ) so that ∀ε > 0,P (|Z| ≥ ε) ≤ EZ2

ε2 for any random variable Z.

(c): Assume Y is a random variable such that its MGF MY (t) = EetY is finite for all t ∈ R, show that when

t ≥ 0, P (X ≥ x) ≤ e−txMX(t) so that P (X ≥ x) ≤ inft≥0 e
−txMX(t).

Proof. (a): X has support {0, 1} with P (X = 1) = P (A) ,P (X = 0) = P (Ac) = 1− P (A) gives the PMF.

From the PMF, it’s easy to calculate EX = P (A) ,EX2 = P (A) so V ar(X) = EX2 − E2X = P (A)− [P (A)]2.

GX(s) = EsX = 1 · P (X = 0) + s · P (X = 1) = 1− P (A) + s · P (A) (2)

(b): This is the classical trick on indicator

∀a > 0, ϕ(a) · P (Y ≥ a) = E[ϕ(a)IY≥a] ≤ E[ϕ(Y )IY≥a] ≤ Eϕ(Y ) (3)

since ϕ is increasing and indicator is non-negative and takes value no larger than 1.

Consider ϕ(x) = x2 non-negative and increasing on [0,+∞) plugging in Y = |Z| ≥ 0, a = ε to conclude the

proof.

(c):

Since for t > 0, etx is non-negative and increasing in x, resulting in

P (X ≥ x) = P
(
etX ≥ etx

)
≤ e−txEetX = e−txMX(t) (4)

applying the conclusion in (b) for Y = etX , a = etx, ϕ(x) = x. When t = 0, check e−txMX(0) = 1 so P (X ≥ x) ≤ 1

naturally holds. This proves that the inequality holds for ∀t ≥ 0. Taking inf on both sides w.r.t. t concludes the

proof.

3
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Remark. Part (c) is a very important technique that will appear once again in 213BC to derive the Chernoff bound

of concentration of measures. The basic idea is to introduce some unspecified parameter t, build a bound for

the probability and optimize the bound to get the tightest bound by specifying an appropriate value of

t.

Example for Branching Process

Lemma 2 (Example). There is an isolated island with the original stock of 100 family surnames, and the survival

of family names is modelled by branching process, different surnames’ survivals are independent. Each surname has

extinction probability η = 9
10 .

(a): After many generations how many surnames do you expect to be on the island?

(b): Do you expect the total population on the island to be increasing or decreasing?

Proof. (a): Each surname has η probability of disappearing independent of other surnames so the number of surname

survived after a long enough time denoted X has binomial distribution X ∼ B(100, 1 − η). It’s clear that EX =

100(1− η) = 10.

(b): Since η > 0, η ̸= 1, the branching process {Zn} for each family surname is in the supercritical phase with

offspring mean µ > 1. It’s clear that EZn = µn → +∞ (n → ∞) so the expected total population is increasing.

Lemma 3 (Example). Branching process {Zn} originates from one individual, i.e. Z0 = 1 has Poisson offspring

distribution Z1 ∼ P (λ) (λ > 1). If it’s known that a branching process conditional on extinction is still a branching

process, i.e. let A stands for the event that {Zn} extinct, {En} = {Zn} |A is still a branching process. Can you derive

the offspring distribution for {En}?

Proof. Since E0 = Z0|A = 1, the offspring distribution for {En} is just the distribution of E1. Let’s denote η as the

extinction probability of {Zn}, i.e. η = P (A) and pk = P (Z1 = k) as the offspring distribution PMF of {Zn}.

P (E1 = k) = P (Z1 = k|A) =
P (A|Z1 = k)P (Z1 = k)

P (A)
(5)

using Bayes formula. Notice that conditional on Z1 = k, extinction happens if and only if all k subtrees generated in

generation 1 are extinct. Since all k subtrees are independent and follow the same offspring distribution, they have

exactly the same probability of being extinct, resulting in

P (A|Z1 = k) = [P (A|Z1 = 1)]k = [P (A)]k = ηk (6)

where the second equation comes from the fact that if Z1 = 1, restarting the branching process at generation 1 makes

no difference to the extinction probability (this is actually the Markov property of branching process). At this point,

we see that

P (E1 = k) = ηk−1pk = ηk−1λ
k

k!
e−λ (7)

4
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Since λ > 1, the offspring mean is larger than 1, the extinction probability η is thus the fixed point of G(s) with

G(s) = EsZ1 =

∞∑
k=0

sk
λk

k!
e−λ = esλ−λ (8)

telling us

eηλ−λ = η (9)

turning it into e−λ = ηe−ηλ and replace the e−λ term in the expression of P (E1 = k) to get

P (E1 = k) =
(ηλ)k

k!
e−ηλ, E1 ∼ P (ηλ) (10)

the offspring distribution of {En} is still Poisson but it’s P (ηλ).

Remark. Actually any branching process conditional on extinction is still a branching process. Unfor-

tunately, there is no easy approach to prove this conclusion since it’s a statement for the whole process but not for

pointwise evaluation of the process. Proving this conclusion requires the correspondence between branching process

and random walk which we might have the chance to introduce in the future.

However, we can do heuristic calculations as above to calculate the offspring distribution of the new branching

process. From what we have shown above, the new branching process {En} has offspring distribution with PMF

P (E1 = k) = p′k = ηk−1pk (11)

this is called the duality principle of branching process. In particular, Poisson branching process conditional

on extinction still provides a Poisson branching process.

Lemma 4 (Example). A branching process {Zn} is given such that Z0 = 8 with offspring distribution PMF p0 =

0.2, p1 = 0.5, p2 = 0.3.

(a): Derive its extinction probability η.

(b): Derive the probability that the process is extinct in generation 3 but survives in generation 1 and generation

2.

Proof. (a): Such branching process is actually the sum of 8 branching process
{
Z

(1)
n

}
, ...,

{
Z

(8)
n

}
with the same

offspring distribution but with Z
(1)
0 = ... = Z

(8)
0 = 1. Moreover, those 8 branching processes are independent (by the

definition of branching process).

Denote E
(i)
n as the event that

{
Z

(i)
n

}
is extinct in generation n and S

(i)
n as the event that

{
Z

(i)
n

}
survives in

generation n, E(i) as the event that
{
Z

(i)
n

}
is extinct. It’s clear that {Zn} is extinct if and only if

{
Z

(1)
n

}
, ...,

{
Z

(8)
n

}
are all extinct.

5
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η = P
(
E(1), E(2), ..., E(8)

)
=
[
P
(
E(1)

)]8
(12)

since offspring mean µ = 0.5+ 2× 0.3 = 1.1 > 1,
{
Z

(i)
n

}
is in supercritical phase, P

(
E(1)

)
is the fixed point of G(s).

Let’s first derive generating function

G(s) = 0.2 + 0.5s+ 0.3s2 (13)

and solve G(s) = s to get the solution P
(
E(1)

)
= 2

3 . We get the answer

η =

(
2

3

)8

(14)

(b): {Zn} is extinct in generation 3 iff all
{
Z

(i)
n

}
are extinct in generation 3. {Zn} survives in generation 2 iff

there exists some
{
Z

(i)
n

}
survive in generation 2. Notice that {Zn} survives in generation 2 implies {Zn} survives in

generation 1 so the probability we want to find is the probability that {Zn} is extinct in generation 3 and survives

in generation 2.

P

(
8⋂

i=1

E
(i)
3 ∩

8⋃
i=1

S
(i)
2

)
= P

(
8⋂

i=1

E
(i)
3

)
− P

(
8⋂

i=1

E
(i)
3 ∩

[
8⋃

i=1

S
(i)
2

]c)
(15)

= P

(
8⋂

i=1

E
(i)
3

)
− P

(
8⋂

i=1

E
(i)
3 ∩

8⋂
i=1

[
S
(i)
2

]c)
(16)

= P

(
8⋂

i=1

E
(i)
3

)
− P

(
8⋂

i=1

E
(i)
3 ∩

8⋂
i=1

E
(i)
2

)
(17)

is what we want to calculate by noticing ∀n, i,
[
S
(i)
n

]c
= E

(i)
n . Use the fact that extinction in generation 2 implies

extinction in generation 3, this tells us

P

(
8⋂

i=1

E
(i)
3 ∩

8⋂
i=1

E
(i)
2

)
= P

(
8⋂

i=1

(E
(i)
3 ∩ E

(i)
2 )

)
= P

(
8⋂

i=1

E
(i)
2

)
(18)

the structure of independence helps us again

P

(
8⋂

i=1

E
(i)
3 ∩

8⋃
i=1

S
(i)
2

)
= P

(
8⋂

i=1

E
(i)
3

)
− P

(
8⋂

i=1

E
(i)
2

)
=
[
P
(
E

(1)
3

)]8
−
[
P
(
E

(1)
2

)]8
(19)

the final step is to calculate those two probabilities. Recall the property of generating function that GX(0) =

P (X = 0). Now P
(
E

(1)
2

)
= P

(
Z

(1)
2 = 0

)
= G

Z
(1)
2

(0) and we have proved in class that Z
(1)
2 has generating function

6
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G(G(s)). This tells us P
(
E

(1)
2

)
= G(G(0)) = G(0.2) = 0.312

P
(
E

(1)
3

)
= G(G(G(0))) = G(0.312) = 0.3852

(20)

so the probability we want to find is

0.38528 − 0.3128 (21)

Extra Materials: Total Progeny

For branching process {Zn} with Z0 = 1, offspring distribution {pk} and generating function of offspring

distribution G(s), the total progeny is defined as

T =

∞∑
n=0

Zn (22)

the overall number of individuals in the branching process. It’s easy to see that if extinction probability η = 1, then

T < ∞ a.s., otherwise T has positive probability taking value ∞. Due to this fact, the generating function of the

total progeny is defined as

GT (s) = E
(
sT · IT<∞

)
(23)

with the indicator added to make sure that GT (s) is well-defined. Deriving the generating function of T would

provide us with a taste of how things work in branching process.

Theorem 1. (Generating Function of Total Progeny)

∀s ∈ [0, 1), GT (s) = s ·G(GT (s)) (24)

Proof. Tear apart the expectation w.r.t. the value of Z1 to get

GT (s) =

∞∑
k=0

P (Z1 = k) · E(sT · IT<∞|Z1 = k) (25)

now under the condition that Z1 = k, T = 1 + T1 + ... + Tk where Tj denotes the total progeny of the descendants

of the j-th person in generation 1

GT (s) =

∞∑
k=0

pk · s · E(sT1 ...sTk · IT1<∞...ITk<∞|Z1 = k) (26)

7
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notice that T1, ..., Tk, Z1 are independent and T1, ..., Tk are identically distributed, so

GT (s) =

∞∑
k=0

pk · s · E(sT1 ...sTk · IT1<∞...ITk<∞) (27)

= s ·
∞∑
k=0

pk · E(sT1 · IT1<∞)...E(sTk · ITk<∞) (28)

= s ·
∞∑
k=0

pk · [GT1
(s)]k (29)

= s ·G(GT1
(s)) (30)

at last notice that T
d
= T1 since the branching process starting from generation 0 with 1 individual is the same in

distribution as the branching process starting from generation 1 with 1 individual, so the distribution of the total

progeny in these two cases are the same. We conclude that

GT (s) = s ·G(GT (s)) (31)

Remark. By noticing the continuity of GT and taking s → 1−, one may find that

GT (1) = G(GT (1)) (32)

when η = 1, it’s obvious that GT (1) = P (T < ∞) = 1. When η < 1, however, GT (1) < 1 and is the fixed

point of the generating function G(s). Since in supercritical phase, the fixed point of G(s) in [0, 1) exists and is

uniquely the extinction probability η, we conclude that GT (1) = P (T < ∞) = η. This provides another perspective

understanding the extinction probability.

8
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Week 2

Interpretation of Markov Property

From what we have learnt about discrete-state discrete-time Markov chain, it’s a stochastic process {Xn}
satisfying the Markov property

P (Xn = in|X0 = i0, ..., Xn−1 = in−1) = P (Xn = in|Xn−1 = in−1) (33)

many different interpretations can be made on the Markov property. The most intuitive one is saying that conditional

on the value of Xn−1, Xn is independent of X0, ..., Xn−2. In short, conditional on present (observation at time

n− 1), past (observation prior to time n− 1) is independent of future (observation after time n− 1).

Another useful interpretation of Markov property is that Markov chain is a process that is memoryless. Since

Markov property is saying that if one cares about the future behavior of Markov chain, only the most recent past

matters, if we have already observed the event {Xn = 0} happening, we can actually forget about X0, ..., Xn−1 when

investigating the behavior of the Markov chain after time n. This interpretation will be made clearer a little bit

afterwards.

Due to the presence of Markov property, one can define the transition probability of Markov chain pnij(1) =

P (Xn+1 = j|Xn = i) as the probability of transiting from state i to state j at time n. For simplification, we will only

consider the time-homogeneous Markov chain, i.e. Markov chain such that P (Xn+1 = j|Xn = i) does not depend on

n so the same transition law applies at each time point. After knowing the transition probability, one last thing to

know in order to fix the distribution of the whole Markov chain is just the information on where it starts, i.e. the

initial distribution of X0 denoted µ. As a result, the distribution of a Markov chain is fixed iff the initial

distribution and the transition probability are known.

Remark. At this point considering time-homogeneous Markov chain, one can always stop the Markov chain and

restart it. For example, if we have already observed the event {Xn = 0} happening, we can actually forget about

X0, ..., Xn−1 when we investigate the behavior of the Markov chain after time n. This is equivalent to stopping the

current Markov chain at time n and restarting it with the same transition rule but act as if it has

initial value 0. We will come back to this interpretation a lot of times in the future.

Examples of Markov Chain

Let’s look at some examples of Markov chain. The easiest one is the two-state Markov chain with state space

S = {0, 1} (state of the phone, 0 means free and 1 means busy). It’s assumed that at each time point there’s

probability p that a call is coming in and if the phone was busy then there is q probability that the call will end at

this time point. This results in the transition matrix

P =

[
1− p p

q 1− q

]
, p, q ∈ [0, 1] (34)

9
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however, if the system can put one caller on hold, the state space is extended to S = {0, 1, 2} where state 1 means

that the phone is busy but no caller is on hold and state 2 means that the phone is busy and there’s also one caller

on hold. The transition matrix now becomes

P =

 1− p p 0

q(1− p) 1− p(1− q)− q(1− p) p(1− q)

0 q 1− q

 , p, q ∈ [0, 1] (35)

the second row comes from the fact that state 1 transits to state 2 with probability p(1 − q) (the old call has not

ended and a new call comes in) while state 1 transits to state 0 with probability q(1− p) (the old call has ended and

no new call comes in). This provides a simple queueing model that we will be able to analyze later on.

On the other hand, Markov chain can also be formed in structures other than the real line R. Consider the

random walk on any undirected graph with S = {v1, ..., vn} as the set of all vertices. Let N(vi) = {vj ∈ V : vj ∼ vi}
be the neighborhood of vertex vi so that dvi = |N(vi)| is called the degree of vertex vi. When the state is at vi, it

has 1
dvi

probability transiting to any one of the states in N(vi). It’s called a random walk on graph and it also

turns out to be a Markov chain. Another famous example would be the random walk on infinite binary tree,

we will come back to this interesting example later. Different from the random walk on finite graph, this example is

a random walk on infinite graph.

Another useful example to mention is that if {Xn} is a Markov chain with state space S, the tuple Zn =

(Xn, Xn+1) that tracks the two-step history of {Xn} is also a Markov chain with state space S×S. An easy proof

can be given below that

P (Zn = (in, in+1)|Z0 = (i0, i1), ..., Zn−1 = (in−1, in)) (36)

= P (Xn = in, Xn+1 = in+1|X0 = i0, X1 = i1, ..., Xn = in) (37)

= P (Xn+1 = in+1|X0 = i0, X1 = i1, ..., Xn = in) (38)

= P (Xn+1 = in+1|Xn−1 = in−1, Xn = in) (39)

= P (Xn = in, Xn+1 = in+1|Xn−1 = in−1, Xn = in) (40)

= P (Zn = (in, in+1)|Zn−1 = (in−1, in)) (41)

using the Markov property of {Xn}. An example would be to set {Xn} as the output sequence one is getting by tossing

a coin independently. For this Markov chain, S = {0, 1} so {Zn} is a Markov chain on {(0, 0), (0, 1), (1, 0), (1, 1)},
with transition probability matrix

P =


1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

 (42)

and initial distribution as that Z0 has 1
4 probability taking all four possible states. This Markov chain is useful if we

10
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want to find, e.g. the expected time of tosses we have to make until we see two consecutive heads.

Remark. Markov process theory is the core part of probability theory since in real life we rarely see a sequence of

independent random variables. Markov process considers a sequence of dependent random variables by putting mild

restrictions on the dependency.

However, one might be curious about the way we deal with non-Markov processes. For example, consider process

{Xn} with state space {0, 1}, the transition rule is that

• If Xn−1 = 0, Xn−2 = 0, then Xn ∼ B(1, 1
2 )

• If Xn−1 = 0, Xn−2 = 1, then Xn ∼ B(1, 3
4 )

• If Xn−1 = 1, Xn−2 = 0, then Xn ∼ B(1, 1
4 )

• If Xn−1 = 1, Xn−2 = 1, then Xn ∼ B(1, 2
3 )

it’s quite obvious that {Xn} is not a Markov chain since the transition rule at time n differs according to different

values of Xn−2.

However, Zn = (Xn, Xn+1) turns out to be a Markov chain with transition matrix (please check)

P =


1
2

1
2 0 0

0 0 3
4

1
4

1
4

3
4 0 0

0 0 1
3

2
3

 (43)

this is because for {Xn} the transition rule is fixed based on its two-step history and the construction of Zn as a

tuple keeps track of the two-step history of {Xn} at each time point so it’s Markov. More generally, when {Xn} is

not Markov but its transition rule depends on k-step history, setting Zn = (Xn, Xn+1, ..., Xn+k) always

creates a Markov chain {Zn} at the cost of enlarging the state space.

Chapman-Kolmogorov Equation

It should be familiar that Markov property implies Chapman-Kolmogorov equation, however, here we raise a

counterexample to show that the converse is not true.

Consider Y1, Y3, ... as i.i.d. random variables taking value ±1 with probability 1
2 and set Y2k = Y2k−1Y2k+1 so

Y2, Y4, ... is also a sequence of i.i.d. random variables taking value ±1 with probability 1
2 . Moreover, the sequence of

random variables Y1, Y2, Y3, ... are pairwise independent. Those facts can be checked below

P (Y2 = 1) = P (Y1Y3 = 1) = P (Y1 = 1, Y3 = 1) + P (Y1 = −1, Y3 = −1) (44)

= P (Y1 = 1)P (Y3 = 1) + P (Y1 = −1)P (Y3 = −1) =
1

4
+

1

4
=

1

2
(45)

11
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due to independence of Y1 and Y3

P (Y2 = 1, Y4 = 1, ...., Y2k = 1) = P (Y1Y3 = 1, Y3Y5 = 1, ...., Y2k−1Y2k+1 = 1) (46)

= P (Y1 = 1, Y3 = 1, ..., Y2k+1 = 1) + P (Y1 = −1, Y3 = −1, ..., Y2k+1 = −1) (47)

=
1

2k+1
+

1

2k+1
=

1

2k
= P (Y2 = 1)P (Y4 = 1) ...P (Y2k = 1) (48)

due to the sequence Y1, Y3, ... being i.i.d., for the pairwise independence of Y1, Y2, Y3, ..., we only have to check the

independence of Y1 and Y2k without loss of generality

P (Y1 = 1, Y2k = 1) = P (Y1 = 1, Y2k−1Y2k+1 = 1) (49)

= P (Y1 = 1, Y2k−1 = 1, Y2k+1 = 1) + P (Y1 = 1, Y2k−1 = −1, Y2k+1 = −1) (50)

=
1

8
+

1

8
=

1

4
= P (Y1 = 1)P (Y2k = 1) (51)

Using the facts mentioned above, the transition probability is well-defined

∀i, j ∈ {−1, 1} ,∀m, pij(m) = P (Yn+m = j|Yn = i) = P (Yn+m = j) =
1

2
(52)

and the m-step transition matrix is

P (m) =

[
1
2

1
2

1
2

1
2

]
(53)

let’s check Chapman-Kolmogorov equation

P (m)P (1) =

[
1
2

1
2

1
2

1
2

]
= P (m+1) (54)

proves that P (m) = [P (1)]m. However, this process {Yn} is not a Markov chain since

P (Y3 = 1|Y2 = 1, Y1 = 1) = P (Y3 = 1|Y1Y3 = 1, Y1 = 1) = 1 (55)

P (Y3 = 1|Y2 = 1) = P (Y3 = 1) =
1

2
(56)

violates the Markov property.

Remark. When one is asked to prove that a process is Markov, merely arguing the existence of the transition matrix

or checking Chapman-Kolmogorov equation does not suffice.

12
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Week 3

Examples of Markov Chain

Lemma 5 (Example). X,Y are two independent homogeneous Markov chains on the same state space S, show that

Zn = (Xn, Yn) is a Markov chain on the state space S × S and derive transition probability.

Proof. By definition of Markov chain, let’s check

P (Zn+1 = (xn+1, yn+1)|Z0 = (x0, y0), ..., Zn = (xn, yn)) (57)

= P (Xn+1 = xn+1, Yn+1 = yn+1|X0 = x0, Y0 = y0, ..., Xn = xn, Yn = yn) (58)

=
P (X0 = x0, Y0 = y0, ..., Xn+1 = xn+1, Yn+1 = yn+1)

P (X0 = x0, Y0 = y0, ..., Xn = xn, Yn = yn)
(59)

=
P (X0 = x0, ..., Xn+1 = xn+1)P (Y0 = y0, ..., Yn+1 = yn+1)

P (X0 = x0, ..., Xn = xn)P (Y0 = y0, ..., Yn = yn)
(60)

due to the independence of X,Y , then use Markov property of X,Y and the independence once more

P (X0 = x0, ..., Xn+1 = xn+1)P (Y0 = y0, ..., Yn+1 = yn+1)

P (X0 = x0, ..., Xn = xn)P (Y0 = y0, ..., Yn = yn)
(61)

= P (Xn+1 = xn+1|X0 = x0, ..., Xn = xn)P (Yn+1 = yn+1|Y0 = y0, ..., Yn = yn) (62)

= P (Xn+1 = xn+1|Xn = xn)P (Yn+1 = yn+1|Yn = yn) (63)

=
P (Xn = xn, Xn+1 = xn+1)P (Yn = yn, Yn+1 = yn+1)

P (Xn = xn)P (Yn = yn)
(64)

=
P (Xn = xn, Xn+1 = xn+1, Yn = yn, Yn+1 = yn+1)

P (Xn = xn, Yn = yn)
(65)

= P (Xn+1 = xn+1, Yn+1 = yn+1|Xn = xn, Yn = yn) (66)

= P (Zn+1 = (xn+1, yn+1)|Zn = (xn, yn)) (67)

concludes the proof.

When it comes to the transition probability of Z in terms of X,Y ,

pZ(x0,y0),(x1,y1)
= P (X1 = x1, Y1 = y1|X0 = x0, Y0 = y0) (68)

=
P (X1 = x1, Y1 = y1, X0 = x0, Y0 = y0)

P (X0 = x0, Y0 = y0)
(69)

=
P (X1 = x1, X0 = x0)P (Y1 = y1, Y0 = y0)

P (X0 = x0)P (Y0 = y0)
(70)

= P (X1 = x1|X0 = x0)P (Y1 = y1|Y0 = y0) (71)

= pXx0,x1
· pYy0,y1

(72)

gives the representation.
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Remark. The tuple of two independent Markov chain is still a Markov chain. This idea does not seem interesting

at the first glance but it turns out to be an important technique called independent coupling. We will see how this

coupling technique helps us when proving the convergence theorem for ergodic Markov chain.

Lemma 6 (Example). X is a Markov chain with state space S and h : S → T is bijective. Show that Yn = h(Xn)

is a Markov chain on T .

Proof. Again from the definition,

P (Yn+1 = yn+1|Y0 = y0, ..., Yn = yn) = P (h(Xn+1) = yn+1|h(X0) = y0, ..., h(Xn) = yn) (73)

= P (Xn+1 = xn+1|X0 = x0, ..., Xn = xn) (74)

= P (Xn+1 = xn+1|Xn = xn) (75)

where x0 = h−1(y0), ..., xn+1 = h−1(yn+1) is well-defined and the Markov property of X is applied. Now we just

need to go back from X to Y

P (Xn+1 = xn+1|Xn = xn) = P (Yn+1 = yn+1|Yn = yn) (76)

to see that Y also has Markov property.

Remark. It’s left as an exercise to the readers how to construct an example of function f : S → T such that X is a

Markov chain but Zn = f(Xn) is not a Markov chain.

The following exercise is left to the reader.

Lemma 7 (Exercise). Let X be a Markov chain and Yn = Xkn for some fixed positive integer k, prove that Y is

also a Markov chain and find the transition matrix of Y in terms of the transition matrix of X.

Gambler’s Ruin

Imagine a person starts gambling with j dollar, each time of gambling he either wins 1 dollar with probability

p or loses 1 dollar with probability q where p+ q = 1, p ̸= q. When the person has zero dollar, he loses all his money

(ruin state) and when the person reaches N dollar, he stops gambling with his wealth reaches the maximum possible.

We want to find what’s the probability that the person is in the ruin state if infinitely many times of gambling is

allowed.

We shall first build a mathematical model for this process. It’s clear that if we denote {Xn} as the amount of

dollar this person has at time n (before he gambles at time n), it’s a Markov chain on S = {0, 1, ..., N} and X0 = j

with

∀i ∈ {1, 2, ..., N − 1} ,∀j ∈ S, pi,j =

p j = i+ 1

q j = i− 1
(77)

14
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the corner case is that

p0,0 = 1, pN,N = 1 (78)

so it’s actually a simple asymmetric random walk with absorbing boundary.

Let α(j) denote the probability that the gambler eventually ruins with initially j dollars, we naturally discuss

by case based on the value of X1

∀j ∈ {1, 2, ..., N − 1} , α(j) (79)

= P (X1 = j + 1|X0 = j)P (ruins|X1 = j + 1, X0 = j) + P (X1 = j − 1|X0 = j)P (ruins|X1 = j − 1, X0 = j) (80)

= p · P (ruins|X1 = j + 1, X0 = j) + q · P (ruins|X1 = j − 1, X0 = j) (81)

by Markov property, we can stop the chain at time 1 and restart it. On observing {X1 = j + 1}, the person acts as

if he is starting the gambling with initially j + 1 dollars.

p · P (ruins|X1 = j + 1, X0 = j) + q · P (ruins|X1 = j − 1, X0 = j) (82)

= p · P (ruins|X0 = j + 1) + q · P (ruins|X0 = j − 1) (83)

= p · α(j + 1) + q · α(j − 1) (84)

now the only work is to solve this recurrence relationship

α(j) = p · α(j + 1) + q · α(j − 1), α(0) = 1, α(N) = 0 (85)

Since this recurrence relationship is linear, homogeneous (no extra constants) and has constant coefficients (no

dependence on j in the coefficients), the approach of using the root of characteristic equation works. To be clear

with that, the characteristic equation is

x = px2 + q (86)

solve this to get two distinct roots x1 = 1, x2 = q
p (since p ̸= q), the formula of α(j) must have the form

α(j) = c1x
j
1 + c2x

j
2 = c1 + c2

(
q

p

)j

(87)

according to the conditions α(0) = 1, α(N) = 0, it’s possible to solve out

c1 = −

(
q
p

)N
1−

(
q
p

)N , c2 =
1

1−
(

q
p

)N (88)
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provides the formula

α(j) =

(
q
p

)j
−
(

q
p

)N
1−

(
q
p

)N (89)

as the ruin probability.

Remark. A lot of interesting interpretations can be made from this formula. Consider taking the limit N → ∞
(greedy gambler who never quits gambling), when p < 1

2 < q, limN→∞ α(j) = 1, and when q < 1
2 < p, limN→∞ α(j) =(

q
p

)j
. When the gamble is for the person, the ruin probability is exponentially decaying w.r.t. the amount of initial

asset j. When the gamble is against the person, the gambler almost surely ruins. That is to say, even if the gamble

is designed to be slightly for the person, e.g. p = 51
100 , q = 49

100 , with the amount of initial asset j = 50, the person

still has a non-negligible 13.53% probability of getting ruined.

One might find that we have skipped the case where p = q = 1
2 . This part will be left to the reader, but one

has to be careful that when p = q, the characteristic equation has two identical roots so α(j) must have the form

α(j) = c1x
j
1 + c2jx

j
2 (90)

repeating the same procedure, one would find out

α(j) = 1− j

N
→ 1 (N → ∞) (91)

surprisingly, even if the gamble is fair, a greedy gambler almost surely ruins.
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Week 4

Interpretation of Recurrence and Transience

By definition, state s of a Markov chain is recurrent iff

Ps (Ts < ∞) = 1 (92)

where the subscript s under the probability means that the Markov chain starts with initial state X0 = s and the

stopping time is defined as

Ts
def
= inf {n ≥ 1 : Xn = s} (93)

the first hitting time to state s except time 0.

We have also proved in class that a state is recurrent iff it is almost surely visited for infinitely many times.

This is due to the fact that Markov chain can be restarted at any stopping time (strong Markov property), restarting

Markov chain at time Ts gives a new Markov chain as if it has initial state XTs
= s. Since recurrent state will be

visited in finitely many time and the time horizon is infinite, such restarting of Markov chain must happen infinitely

often.

Intuitively, recurrence can be understood in terms of the trend of stochastic process. If a stochastic process has

a certain pattern of trend, it must be transient. An example would be the one in the homework showing that if we

have a random walk Sn with i.i.d. integrable increments X1, X2, ... such that EX1 ̸= 0, then state 0 must be transient.

The interpretation is that the strong law of large number provides the conclusion that Sn

n

a.s.→ EX1 (n → ∞), saying

Sn either goes to +∞ or −∞ depending on the sign of EX1. In other words, such a random walk asymptotically

moves toward +∞ or moves toward −∞, getting farther away from 0 so there’s no reason to expect that state 0 will

be hit after a long enough period of time, which naturally shows the fact that ps,s(n) → 0 (n → ∞) for any transient

state s.

Remark. Be careful that the converse in not always true that such interpretation might fail in certain cases. For

example, consider simple symmetric random walk in Zd. Since each increment has equal probability of going in each

direction, there is a nice symmetricity for this process, meaning that the process does not have a trend of going

somewhere particularly. However, when d ≤ 2 the process is recurrent and when d ≥ 3 the process is transient, which

is a surprising fact characterizing the essential difference between two dimensional and three dimensional space.

Remark. One might suspect that what I have mentioned above is too ”unmathematical” since nothing seems to be

rigorously stated. It’s actually the opposite that the idea is always the most important thing to get while the proof can

often be made rigorous without too much effort. The following theorems exactly come from the interpretation above

and the readers are welcome to check more details if interested.

Theorem 2 (Chung-Fuchs). For random walk on R, if WLLN holds in the form Sn

n

p→ 0 (n → ∞), then {Sn} is

recurrent.
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Theorem 3. If Sn is a random walk on R2 and Sn√
n

d→ N(µ, σ2) with σ > 0 non-degenerate, then {Sn} is recurrent.

When discussing recurrence, irreducibility is always a useful criterion since all states in the same communication

class has the same recurrence or transience property. Recall that if the Markov chain is not irreducible (there exists

more than one communication class), one can always first do the canonical decomposition of state space and then

discuss the recurrence of each communication class.

Examples of Recurrent and Transient Markov Chain

Lemma 8 (SSRW on Binary Tree). Consider {Sn} as simple symmetric random walk on binary tree where the state

space is S =
{
1, 2, ..., 2N − 1

}
and SSRW always starts from the root of the tree (node 1), i.e. S0 = 1. The node

indices are sorted in the order that node 1 has edges with 2 and 3, node 2 has edges with 4, 5 and node 3 has edges

with 6, 7, etc. Whenever Sn−1 is at a node with d degree, Sn transits to all nodes in the neighborhood of Sn−1 with

probability 1
d . Discuss the recurrence of the Markov chain (be careful that here N can take value as any finite positive

integer or +∞).

Proof. Whatever value N takes, the Markov chain is always irreducible so we only need to consider the recurrence

property of a single state, e.g. state 1.

Let’s first look at the case where N < ∞ so the state space is finite. In this case, there must exist at least one

recurrent state (refer to the remark below for the proof and explanation) so the whole chain is recurrent.

When N = ∞, however, the Markov chain is transient. To see this fact, let’s define another process {Tn} where

Tn is the height of Sn in the binary tree and it’s also a Markov chain. In more detail, the root state 1 has height 0,

the node 2, 3 has height 1, etc. If {Sn} is recurrent, {Tn} must also be recurrent.

At this point, let’s figure out the transition rule of {Tn} that T0 = 0 and condition on observing {Tn = k} , k ̸= 0,

Tn+1 =

k + 1 w.p. 2
3

k − 1 w.p. 1
3

(94)

and state 0 is a reflection wall, i.e. state 0 necessarily transits to state 1 for {Tn}. In other words, {Tn} is just a

simple asymmetric random walk with reflection boundary, it has a trend of going rightward (going rightward has

probability 2
3 > 1

3 ) so it’s transient, a contradiction.

In all, {Sn} is recurrent on finite binary tree and transient on infinite binary tree. Recurrence property can be

very different on finite graph compared to infinite graph!

Remark. To see that an irreducible Markov chain with finite state space S must be recurrent, just prove by contra-

diction that it’s otherwise transient so ∀r, s ∈ S, pr,s(n) → 0 (n → ∞). Consider∑
s∈S

pr,s(n) = 1 (95)
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take limit on both sides as n → ∞, the limit goes in since it’s a finite sum

0 =
∑
s∈S

lim
n→∞

pr,s(n) = 1 (96)

a contradiction! The explanation for this fact is that since there are only finitely many states but infinite time horizon,

there must exists some states that are visited infinitely many times regardless of where the chain starts (the probability

mass cannot escape when there are only finitely many states).

Remark. A rigorous proof of the fact that simple asymmetric random walk on S = {0, 1, 2, ...} with reflection wall

at 0 must be transient is provided as follow. Consider the recurrence property of state 0 since we have an irreducible

Markov chain, intuitively we shall have an exponentially small chance hitting the reflection wall

P (X2k = 0) =

(
2k

k

)(
1

3

)k (
2

3

)k

=

(
2k

k

)(
2

9

)k

(97)

from the Taylor series (1− x)−
1
2 =

∑∞
n=0

(
2n
n

) (
x
4

)n
, we see that

∞∑
k=0

P (X2k = 0) =

(
1− 8

9

)− 1
2

= 3 < ∞ (98)

by Borel-Cantelli lemma (we will learn this in 213B), P (X2k = 0 i.o.) = 0 so almost surely ∃N, ∀n > N , X2n never

hits the reflection wall so the reflection wall is hit for at most finitely many times. From the characterization of

recurrence that it requires hitting state 0 to occur infinitely often, we know that state 0 must be transient.

Lemma 9. Consider the renewal chain as a Markov chain with state space S = {0, 1, 2, ...} such that ∀n >

0, pn,n−1 = 1 and p0,n = pn for some given PMF of the renewal distribution {pn}n≥0. Show that this chain is always

recurrent but positive recurrent iff the renewal distribution has finite mean.

Proof. This Markov chain is irreducible so we only need to figure out the recurrence property of state 0.

P0 (T0 = k) = P0 (X1 ̸= 0, X2 ̸= 0, ..., Xk−1 ̸= 0, Xk = 0) (99)

= P0 (X1 = k − 1, X2 = k − 2, ..., Xk−1 = 1, Xk = 0) (100)

= P0 (X1 = k − 1) = pk−1 (101)

check the definition of recurrence

P0 (T0 < ∞) =

∞∑
k=1

P0 (T0 = k) =

∞∑
k=1

pk−1 = 1 (102)
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and check the definition of positive recurrence

E0T0 =

∞∑
k=1

kpk−1 (103)

is finite iff
∑∞

k=0 kpk < ∞ proves the conclusion.
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Week 5

Independent Coupling

We have mentioned in the previous context that if {Xn} is a Markov chain and {Yn} is an independent copy of

{Xn} then Zn = (Xn, Yn) is also a Markov chain with transition probability pZ(x0,y0),(x1,y1)
= pXx0,x1

· pYy0,y1
.

Now let’s consider {Xn} to be an aperiodic positive recurrent irreducible Markov chain with stationary distribu-

tion π. By the lemma shown in lecture notes, irreducible aperiodic Markov chain always has ∀i, j ∈ S,∃n0 = n0(i, j)

such that ∀n ≥ n0, pi,j(n) > 0, in other words, the n step transition probability between any two states is strictly

positive eventually. As a result, {Zn} must be irreducible. To see this fact intuitively, for any two states of {Zn}
denoted (x0, y0), (x1, y1), ∃n0, n1 such that ∀n ≥ n0, px0,x1

(n) > 0 and ∀n ≥ n1, py0,y1
(n) > 0. We would expect

pZ(x0,y0),(x1,y1)
(n0 + n1) = pXx0,x1

(n0 + n1) · pYy0,y1
(n0 + n1) > 0 so {Zn} is irreducible.

Remark. Think about a counterexample where the lack of aperiodicity results in Zn to be not irreducible. Hint:

think about two-state alternating Markov chain {Xn} with S = {0, 1} , X0 = 0 and transition matrix P =

[
0 1

1 0

]
.

Make an independent copy of {Xn} denoted {Yn} with Y0 = 0 then {Zn} can only take values (0, 0), (1, 1).

Lemma 10. Try to find the stationary distribution of {Zn} under the condition above.

Proof. Since {Zn} is irreducible, its stationary distribution, if exists, is unique. Let’s try to guess its stationary

distribution and verify it. It’s natural to guess that π(x,y) = πxπy is the stationary distribution of {Zn}.∑
x0,y0

π(x0,y0) · p
Z
(x0,y0),(x1,y1)

=
∑
x0

πx0
· pXx0,x1

·
∑
y0

πy0
· pYy0,y1

= πx1
· πy1

= π(x1,y1) (104)

also check the normalization property ∑
x,y

π(x,y) =
∑
x

πx

∑
y

πy = 1 · 1 = 1 (105)

so such π(x,y) is the unique stationary distribution of {Zn}.

At this point, one could go back to the lecture notes and check the proof of the ergodic theorem for Markov

chain. The trick is to make independent coupling with X0 ∼ µ following any initial distribution but y0 ∼ π following

stationary distribution. Whenever {Zn} first hits the diagonal set D = {(i, i) : i ∈ S}, stop the Markov chain and

restart it so {Zn} forgets about the fact that X0, Y0 has different distribution but acts as if the chain starts at

Z0 = (i, i) for some state i ∈ S. At this point after {Zn} has hit the diagonal, {Xn} , {Yn} can be viewed as Markov

chains having the same initial distribution and transition rule so they have the same distribution at each time step,

resulting in Xn converging to the stationary distribution (since Y0 ∼ π, we know ∀n, Yn ∼ π). One would now be

amazed at how smart the proof of ergodic theorem is using independent coupling.
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Birth Death Chain (BDC)

In this section we talk about the analysis of discrete-time BDC to be prepared for the study of continuous-time

Markov chain and BDC. In the context, we restrict ourselves to BDC on S = N, the set of natural numbers. The

transition rule is intuitive

pi,i+1 = pi, pi,i = ri, pi,i−1 = qi (pi + qi + ri = 1) (106)

with the Markov chain assumed to be irreducible (pi, qi are strictly positive except the corner case that q0 = 0).

It’s not obvious how to analyze the recurrence and positive recurrence property of this BDC since the state space is

infinite and one cannot figure out the ”trend” of the process easily.

In this case, we depart from the definition, set Fi as the first hitting time to state i. Directly figuring out the

distribution of Fi is hard so we calculate instead P (Fi < Fj |X0 = m) for 0 ≤ i < m < j, the probability that starting

from state m the BDC visits state i before state j.

Similar to what we have done in the example of gambler’s ruin, we hope that Markov property provides us with

a recurrence relationship for

u(k) = P (Fi < Fj |X0 = k) (i ≤ k ≤ j) (107)

it’s clear that u(i) = 1, u(j) = 0. Conduct the first-step decomposition

∀i < k < j, u(k) = qkP (Fi < Fj |X0 = k,X1 = k − 1) + rkP (Fi < Fj |X0 = k,X1 = k) (108)

+ pkP (Fi < Fj |X0 = k,X1 = k + 1) (109)

= qku(k − 1) + rku(k) + pku(k + 1) (110)

from Markov property. This is a linear homogeneous recurrence relationship with non-constant coefficients (coeffi-

cients has dependence on k) so the characteristic equation method fails. However, if we notice that pk + qk + rk = 1,

it’s still possible to solve

pku(k) + qku(k) = qku(k − 1) + pku(k + 1) (111)

[u(k + 1)− u(k)] =
qk
pk

[u(k)− u(k − 1)] (112)

concludes

u(k + 1)− u(k) =

k∏
a=i+1

qa
pa

[u(i+ 1)− u(i)] =
Pk

Pi
[u(i+ 1)− u(i)] (113)
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with the notation Pk =
∏k

i=1
qi
pi

summing up both sides for k ∈ {i, i+ 1, ..., j − 1} to get

−1 = u(j)− u(i) =

j−1∑
k=i

Pk

Pi
[u(i+ 1)− u(i)] (114)

solves out

u(i+ 1)− u(i) = − Pi∑j−1
k=i Pk

(115)

so

u(s+ 1)− u(s) = − Ps∑j−1
l=i Pl

(116)

To get the expression of u(k), it’s again summing both sides w.r.t. s ∈ {k, k + 1, ..., j − 1}

u(j)− u(k) = −
j−1∑
s=k

Ps∑j−1
l=i Pl

(117)

this tells us

u(k) =

∑j−1
i=k Pi∑j−1
l=i Pl

(118)

Theorem 4 (Recurrence of BDC). Irreducible BDC on S = N is recurrent iff
∑∞

l=1 Pl = ∞, i.e.
∑∞

l=1

∏l
i=1

qi
pi

= ∞.

Proof. Irreducible BDC is recurrent iff state 0 is recurrent iff P0 (F0 < ∞) = 1. To use our calculations above, we

need the starting state of the Markov chain to be strictly larger than 0, let’s think about if it’s possible to start the

Markov chain at state 1. It turns out that first step decomposition provides

P0 (F0 < ∞) = p0P0 (F0 < ∞|X1 = 1) + r0P0 (F0 < ∞|X1 = 0) (119)

= p0P1 (F0 < ∞) + r0 (120)

with p0 + r0 = 1 so P0 (F0 < ∞) = 1 iff P1 (F0 < ∞) = 1.

To set up a first stopping time to the state larger than 1, let’s take j > 1 and notice that Fj
P1−a.s.→ +∞ (j → +∞),

so there’s enough reason to believe that

P1 (F0 < ∞)
?
= lim

j→+∞
P1 (F0 < Fj) (121)

the question mark here means that this step is not rigorously argued and some further work is required. It’s left to

the readers.
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Now plug in the calculation result to see

P1 (F0 < ∞) = lim
j→+∞

∑j−1
i=1 Pi∑j−1
l=0 Pl

= 1− P0∑∞
l=0 Pl

(122)

this limit is 1 iff
∑∞

l=1 Pl = ∞ concludes the proof (P0 = 1 is defined separately for consistency).

Remark. The construction of u(k) actually contains the martingale perspective of BDC. We are not able to talk

about that approach due to the lack of tools (martingale convergence theorem) but the readers are welcome to come

back to this argument after studying martingale theory.

The following examples are special cases of the BDC mentioned above.

Lemma 11 (Example). Prove that the simple random walk on S = N with reflection boundary at 0 is recurrent iff

p ≤ 1
2 (p is the probability the increment is taking value 1).

Lemma 12 (Example). Prove that the irreducible BDC on S = N with reflection boundary at 0 has

qn
pn

→ l (n → ∞) (123)

prove that if l < 1 the chain is transient and if l > 1 the chain is recurrent.

After considering the recurrence property, let’s consider the positive recurrence of such irreducible BDC. Actually,

the criterion of positive recurrence is easier to derive by noticing its connection with the invariant measure. It’s clear

from the lecture note that irreducible Markov chain has unique invariant measure µ (up to a constant multiple) and

it’s positive recurrent iff
∑

s∈S µs < ∞, i.e. it can be normalized to a stationary distribution.

For BDC, if µ is an invariant measure, it’s necessary that∑
j∈S

µjpj,k = µk−1pk−1 + µkrk + µk+1qk+1 = µk (124)

use the fact 1 = pk + rk + qk so

µk+1qk+1 − µkpk = µkqk − µk−1pk−1 = ... = µ1q1 − µ0p0 (125)

assume µ1 = p0

q1
, µ0 = 1 (the selection is not unique) then µkqk − µk−1pk−1 = 0 solves out

µk =

k∏
j=1

pj−1

qj
(126)

check for k = 0 (corner case) gives µ0 = 1 = µ1q1 +µ0r0 so it’s exactly an invariant measure. The following theorem

follows immediately from our knowledge on Markov chain.

Theorem 5 (Positive Recurrence of BDC). Irreducible BDC on S = N is positive recurrent iff
∑∞

k=0 µk < ∞, i.e.∑∞
k=0

∏k
j=1

pj−1

qj
< ∞.
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Lemma 13 (Example). Discuss positive recurrence property of simple random walk on S = N with reflection

boundary at 0.

Lemma 14 (Example). Find some nontrivial transient/null recurrent/positive recurrent examples of time-inhomogeneous

random walk on S = N with reflection boundary at 0, i.e. pj , qj must depend on j.

Hint: When pj = 1
2 + 1

4
√
j
, qj = 1

2 − 1
4
√
j
, rj = 0, it’s transient. When pj = j+1

2j+1 , qj = j
2j+1 , rj = 0, it’s null

recurrent. When pj =
(j+1)2

2[(j+1)2+(j+2)2] , qj =
(j+1)2

2[(j+1)2+j2] , rj = 1− pj − qj, it’s positive recurrent.
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Week 6

Metropolis-Hastings (MH) Algorithm

The MH algorithm is a kind of acceptance-rejection algorithm that enables one to draw random samples from

the distribution with likelihood (or PDF) f(x) only knowing h ∝ f . In other words, one does not have to have a

full knowledge on the likelihood (the normalization constant) but only the structure of the likelihood matters. The

details of the algorithm is presented below for the purpose of completeness. From the lecture, we see the proof why

this algorithm samples from the correct distribution. To be concise, it’s because {Xn} generated is a time reversible

Markov chain with the PDF of stationary distribution as f .

Algorithm 1 Metropolis-Hastings

Input: Integrable function f(x), reference density q(y|x)
Output: Random samples generated X0, X1, ..., Xn as a Markov chain converging in distribution to the probability

distribution with density h where h ∝ f .
1: Choose arbitrary initial state X0 and assume that we have already generated random samples X0, ..., Xi and we

work on generating Xi+1.
2: Generate random sample (proposal) Y ∼ q(y|Xi)

3: Evaluate r ≡ r(Xi, Y ) where r(x, y) = min
{

h(y)q(x|y)
h(x)q(y|x) , 1

}
4: Set Xi+1 =

{
Y w.p. r

Xi w.p. 1− r

Remark. The motivation of MH is to construct transition probability such that the detailed balance condition holds

f(x)p(x, y) = f(y)p(y, x) (127)

since this implies that f is the density of the stationary distribution. To make a comment here, think about the

detailed balance condition in the sense of Physics that f(x)p(x, y) is the mass of substance transmitting from state x

to y and f(y)p(y, x) is the mass of substance transmitting from state y to x and they are equal for any pair of states

x, y. That’s the reason we call it ”detailed balance”.

WLOG, assume f(x)q(y|x) > f(y)q(x|y) so r(x, y) = f(y)q(x|y)
f(x)q(y|x) < 1, r(y, x) = 1. In this case,

p(x, y) = q(y|x)r(x, y), p(y, x) = q(x|y) (128)

so the detailed balance condition always holds. The smart point is to consider likelihood ratio f(y)
f(x) = h(y)

h(x) which is

exactly known since the unknown normalization constant cancels out.

Markov Chain Monte Carlo (MCMC)

MH is actually a special case of the so-called MCMC method. We shall be familiar with normal Monte Carlo

method that it’s an application of the law of large numbers. Naturally, normal Monte Carlo procedure involves
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generating i.i.d. random samples and using the sample mean to approximate the unknown expectation.

However, MCMC goes against this idea. The main reason is that i.i.d. random samples typically has restricted

capacities and sometimes dependency between random variables helps. The easiest model for a sequence of dependent

random variables is just the Markov chain. As a result, MCMC generates random samples as a Markov chain and

hope to play with those concepts in the Markov chain theory.

One broad class of MCMC algorithm makes use of the stationary distribution π and tries to design the transition

probability of {Xn} such that it’s stationary distribution matches with what we hope to see. In MH, we design the

transition probability such that the ergodic theorem of Markov chain works and guarantees the convergence towards

stationary measure π. If the distribution we want to sample from is exactly π, then our work is done by simply

simulating the Markov chain for a long enough time! This is a very clever idea and turns out to be very practically

useful.

Lemma 15 (Example). If the only source of randomness we can have is from a black box that generates i.i.d. random

samples from the distribution B(1, 1
4 ), try to construct a random number generator that generates random samples

from the distribution B(1, 1
2 ). Try to make it as efficient as possible.

Remark (Hint). Think about MCMC method to design B(1, 1
2 ) as the stationary distribution of some Markov chain.

One possible example is {Xn} with state space S = {0, 1}, starting from X0 = 0 with transition matrix

P =

[
3
4

1
4

1
4

3
4

]
(129)

check the stationary distribution and think about why we can simulate the trajectory of this Markov chain. Then

think about how efficient this algorithm is.

Implementing Metropolis-Hastings Algorithm

After understanding the fact that MH actually makes use of the ergodic theorem of Markov chain, it’s natural to

expect that the convergence takes time. As a result, after we start simulating the Markov chain {Xn}, the samples

are not immediately useable and we have to wait some time until the Markov chain converges to the stationary

distribution. This period is called the burn-in period. One might be wondering: how long is the burn-in period

typically? How can we check whether the burn-in period has ended?

There are much details hidden behind but we are able to provide some superficial details here. Typically,

the convergence in the ergodic theorem depends on the transition diagram of the Markov chain, but it’s often

exponentially decaying, i.e.

||µP t − π||2 ≤ Ce−rt (130)

where C is some constant that does not depend on t and r > 0 is the rate. Just to clarify, µP t is the distribution

of Xt with initial distribution µ and the convergence speed is measured under vector ℓ2 norm (of course there are

other different measurements). As a consequence, unless the transition diagram of the Markov chain is ”not nice”,
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we expect to only observe a short burn-in period. In order to ensure ||µP t − π||2 ≤ ε for some error tolerance ε > 0,

t ≥ 1

r
log

C

ε
(131)

suffices. Numerically, if we want to clearly know if the burn-in period has ended, statistical tests (e.g. Kolmogorov-

Smirnov test etc.) are available to judge if the distribution of random samples is not changing a lot.

When it comes to the detail of MH, another topic is the choice of reference distribution q. Typically,

we require that q has a heavier tail than the distribution we want to sample from. For example, using Gaussian

reference to sample from Cauchy doesn’t behave numerically well but using Cauchy reference to sample from Gaussian

is acceptable. Intuitively, if the reference has a lighter tail, then it’s rare for it to generate samples at the tail of

the distribution we want to sample from, causing the lack of exploration. Notice that q is actually a conditional

distribution since we need to use q(x|y) and q(y|x) in MH. As a result, one of the choices is to set q(·|y) as a

distribution centered at y, e.g. set q(·|y) as the PDF of N(y, 1).

Application: Bayesian Setting

The most direct application of MH is to sample from the posterior. Consider the example where X1, ..., Xn ∼
N(θ, 1) with a prior given as π(θ) = 1

π(1+θ2) and we want to calculate the posterior mean of θ.

Bayes formula tells us

π(θ|x1, ..., xn) ∝ π(θ)p(x1, ..., xn|θ) ∝
1

1 + θ2
e−

1
2

∑n
i=1(xi−θ)2 (132)

with the normalization constant C =
∫
R

1
1+θ2 e

− 1
2

∑n
i=1(xi−θ)2 dθ impossible to calculate analytically. At this point,

we desperately need to sample from the posterior distribution without even knowing C, which can be done by MH by

taking the reference distribution q(·|y) as a Cauchy distribution centered at y. After getting samples as the output

of a Markov chain from MH, the law of large numbers of Markov chain tells us that the sample mean approximates

the posterior mean of θ (although they are not i.i.d. samples).

Special Case: Gibbs Sampler

We want to sample from a bivariate target distribution with fully known joint likelihood fU,V (u, v). Adopting

the same MCMC idea in MH, assume that random sample Ui, Vi has been generated such that (Ui, Vi) ∼ fU,V , how

to form new random samples Ui+1, Vi+1 such that (Ui+1, Vi+1) ∼ fU,V ?

Intuitively, we would say: why not create sample Ui+1 ∼ fU |V (u|Vi) and then create sample Vi+1 ∼ fV |U (v|Ui+1)?

Since the joint likelihood is known, the conditional likelihood can definitely be derived. This sampling scheme turns

out to be correct and is just called the Gibbs sampler.

Let’s first see an example for Gibbs sampler where the joint likelihood is given as

fU,V (u, v) =
n!

(n− u)!u!
vu+α−1(1− v)n−u+β−1 (u ∈ {0, 1, ..., n} , v ∈ [0, 1]) (133)
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we know nothing about this joint density so it seems that we should be using the multivariate version of MH directly.

However, if we try to calculate the conditional likelihood, life becomes much easier. It’s clear that the marginals

fU (u) =
n!

(n− u)!u!
Beta(u+ α, n− u+ β) (u ∈ {0, 1, ..., n}) (134)

fV (v) = vα−1(1− v)β−1 (v ∈ [0, 1]) (135)

so the conditional likelihoods are

fU |V (u|v) =
n!

(n− u)!u!
vu(1− v)n−u (136)

fV |U (v|u) =
1

Beta(u+ α, n− u+ β)
vu+α−1(1− v)n−u+β−1 (137)

those are distributions we are familiar with

U |V ∼ B(n, V ), V |U ∼ Beta(U + α, n− U + β) (138)

so it’s very easy to sample from the conditionals. As a result, Gibbs sampler helps us complete the sampling task

easily and effectively. The random sample sequence U1, V1, U2, V2, ... is generated iteratively from

Ui+1 ∼ B(n, Vi), Vi+1 ∼ Beta(Ui+1 + α, n− Ui+1 + β) (139)

At this point, we are clear with how Gibbs sampler works. Let’s show that Gibbs sampler is actually a special

case of Metropolis-Hastings. After Ui, Vi have been generated, we generate sample Ui+1, Vi+1 according to the

dynamics of Gibbs sampler so the Markov chain generated is {(Un, Vn)} but in an alternating way. Under MH

framework, when we are generating Ui+1, the reference distribution is Y ∼ fU |V (·|Vi). On the other hand, when we

are generating Vi+1, the reference distribution is Z ∼ fV |U (·|Ui+1).

As a result, the acceptance probability for the proposal Y is calculated through

r = min

{
fU (Y ) · fV |U (Vi|Y )

fV (Vi) · fU |V (Y |Vi)
, 1

}
= 1 (140)

since fU |V fV = fU,V = fV |UfU . Similarly, the acceptance probability for the proposal Z is also 1 so Gibbs sampler

is just a special case of MH that never rejects the proposal.

Remark. Gibbs sampler can be generalized to sampling random vector from any distribution as long as all ”full

conditionals” (leave-one-out) fU1|U2,...,Un
, fU2|U1,U3,...,Un

, ... are known and can be sampled from in an easy way.
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Week 7

Poisson Process

In order to build continuous-time discrete-state Markov chain, we first introduce Poisson process as an important

model. Poisson process with intensity λ is defined as {Nt} satisfying N0 = 0, Nt+h − Nt ∼ P (λh) with

independent increments, i.e. ∀0 ≤ t1 < ... < tn, Nt1 −N0, Nt2 −Nt1 , ..., Ntn −Ntn−1
are independent. Obviously, it’s

a continuous-time increasing stochastic process and Nt can only take values in N.
Let’s state several most important properties of Poisson process. The first one is the i.i.d. exponential inter-

arrival time of Poisson process. Imagine Nt is the number of customers in a shop at time t, then Poisson process

actually provides a memoryless arrival model for the customers. To see this point, denote Ti = inf {t : Nt = i}
as the first time there are i arrivals, then

{Ti ≤ t < Ti+1} = {Nt = i} (141)

since T0 = 0, it’s clear that

P (t < T1) = P (Nt = 0) = e−λt, T1 ∼ E(λ) (142)

and

P (T2 − T1 > k, T1 > t) =

∫ ∞

t

P (T2 > x+ k|T1 = x) · fT1
(x) dx (143)

the problem turns into calculating the conditional probability P (T2 > x+ k|T1 = x) where

P (T2 > x+ k|T1 = x) = P (Nx+k = 1|T1 = x) (144)

= P (Nx+k −Nx = 0|T1 = x) (145)

= P (Nx+k −Nx = 0) = e−λk (146)

since {T1 = x} is only related to {Nt}t∈[0,x], which is independent of Nx+k − Nx by the independent increment

property. As a result,

P (T2 − T1 > k, T1 > t) =

∫ ∞

t

e−λk · λe−λx dx = e−λke−λt (147)

proves P (T2 − T1 > k|T1 > t) = e−λk does not contain t so T2 − T1 ∼ E(λ) and is independent of T1. A similar

argument enables us to prove that interarrival times T1, T2 − T1, ..., Tk − Tk−1, ... are i.i.d. and follows E(λ).
The second one is the thinning of Poisson process. For Poisson process {Nt} with intensity λ, if there’s

a classifier independent of the whole Poisson process that splits all arrivals into two different processes {Pt} , {Qt},
then those two processes must be independent Poisson processes. To be more specific, consider a classifier that

classifies customers into male and female customers, {Pt} only records the arrival of male customers while {Qt} only
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records the arrival of female customers. Assume that each customer has probability p of being male and 1 − p of

being female, let’s investigate those two thinned processes.

Obviously, P0 = 0, Pt+h − Pt = k iff there are k male customers arriving between [t, t + h] iff there are K

customers arriving between [t, t+ h] and k of them are male

P (Pt+h − Pt = k) =

∞∑
K=k

P (Nt+h −Nt = K) ·
(
K

k

)
pk(1− p)K−k (148)

=

∞∑
K=k

(λh)K

K!
e−λh ·

(
K

k

)
pk(1− p)K−k (149)

=

∞∑
K=k

(λh)K

k!(K − k)!
e−λh · pk(1− p)K−k (l = K − k) (150)

=
(λhp)ke−λh

k!

∞∑
l=0

(λh)l

l!
· (1− p)l (151)

=
(λhp)k

k!
e−λhp (152)

proves Pt+h−Pt ∼ P (λph) and it obviously has independent increments since {Nt} does so {Pt} is a Poisson process

with intensity pλ. Similarly, {Qt} is a Poisson process with intensity (1− p)λ.

To prove the independence of {Pt} and {Qt}, it suffices to prove that the increments Pt+h − Pt, Qt+h −Qt are

independent. By the same reasoning,

P (Pt+h − Pt = k,Qt+h −Qt = j) = P (Nt+h −Nt = j + k) ·
(
j + k

k

)
pk(1− p)j (153)

=
(λh)j+k

(j + k)!
e−λh ·

(
j + k

k

)
pk(1− p)j (154)

=
(pλh)k((1− p)λh)j

j!k!
e−pλhe−(1−p)λh (155)

= P (Pt+h − Pt = k) · P (Qt+h −Qt = j) (156)

proves the conclusion.

Remark. This is a remarkable result since Pt +Qt = Nt, the thinned process must add up to the original Poisson

process but they are actually independent!

Conversely, one can easily prove that the sum of two independent Poisson processes with intensity λ, µ adds up

to a Poisson process with intensity λ+ µ.

Construction of Continuous-time Markov Chain

At this point, we introduce the motivation of the construction of continuous-time discrete-state Markov chain.

Assume {Xn} is a discrete-time discrete-state Markov chain, to include the continuous-time effect, the biggest
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difficulty is to maintain Markov property, which is some kind of memoryless property. However, since Poisson

process has memoryless arrival, it’s immediate that we expect to see

Yt = XNt
(157)

as a continuous-time Markov chain. The idea is simple, whenever it makes a state transition, it waits for a period of

time exactly the same as the interarrival time in Poisson process. It turns out that this construction maintains the

Markov property of this process. For simplicity, we don’t allow the underlying discrete-time Markov chain

{Xn} to have pii > 0, i.e. any state cannot transit to itself. Under this setting, any transition of state happens at

rate λ which is the intensity of the Poisson process.

However, one could easily find out some restrictions out of this construction. For example, the interarrival time

are i.i.d. for Poisson process but that’s not necessarily true for continuous-time Markov chain. Independence of

interarrival time is actually enough to guarantee the Markov property. As a result, we generalize this construction

to add a holding rate for each state (high holding rate results in low holding time on average), denoted

q : S → (0,∞) (158)

such that the holding time of each state could be different.

The final model is organized as the following:

• Initial state X0, the transition rule of {Xn} and holding rates q are given.

• Sample E0 ∼ E(1), scale it with holding rate of state X0 to get T0 = 1
q(X0)

E0 ∼ E(q(X0))

• After time T0, make a state transition for the underlying chain from X0 to X1 so ∀t ∈ [0, T0), Yt = X0 and

YT0
= X1.

• Sample E1 ∼ E(1) independent of E0, scale it with holding rate of state X1 to get T1 = 1
q(X1)

E1 ∼ E(q(X1))

• After time T1, make a state transition for the underlying chain from X1 to X2 so ∀t ∈ [T0, T0 + T1), Yt = X1

and YT0+T1
= X2.

• Repeat this procedure.

here we naturally call Ti holding times and they are independent (interarrival time in Poisson process). Sj =

T0 + T1 + ...+ Tj−1 is the time when the j-th jump happens (arrival time in Poisson process).

Birth-death chain (BDC) is the most useful example of continuous-time Markov chain. In the case of BDC,

the state transition of {Xn} either increases the state by 1 (birth) or decreases the state by 1 (death) so the only

nontrivial transition probability of {Xn} is pi,i+1, pi,i−1.

Denote B(i), D(i) as the time until the next birth/death given that Yt = i (there are i individuals now), then

B(i), D(i) are independent exponentially distributed random variables (to maintain the Markov property) so that

B(i) ∼ E(λi), D(i) ∼ E(µi) (159)
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where λi, µi are called birth/death rates with qi = λi + µi as holding rates such that

λi = pi,i+1qi, µi = pi,i−1qi (160)

can be easily verified.

Remark. Notice that the holding time Ti = min {B(i), D(i)} ∼ E(λi + µi) (the time until the next birth or death

happens, which brings with a state transition) since B(i), D(i) are independent exponentially distributed. That’s why

qi = λi + µi is the holding rate.

Interpret Models as BDC

Let’s try to identify some commonly appearing models as BDC and try to specify their birth/death rates. The

correspondence is important to truly understand the generality of BDC and to apply conclusions of BDC for those

models.

Before doing that, let’s recall that continuous-time Markov chain {Yt} is regular if ∀i ∈ S,Pi (S∞ = ∞) = 1,

i.e. starting from any state, there’s finite number of state transition in finite time, i.e. the state transition does not

happen too often. An equivalent condition for this is that ∀i ∈ S,Pi

(∑
n

1
q(Xn)

= ∞
)
= 1 and a useful sufficient

condition is that X0 = i and i is the recurrent state of {Xn}.
Let’s first look at M/M/1 queue with memoryless arrival (rate λ), memoryless serving time (rate µ) and only

one server in the system. Let Yt denote the number of people in the system at time t, Y0 = 0. It’s clear that it’s a

BDC with birth rate λi = λ and death rate µi = µ so the holding rate qi = λ+ µ, a regular process.

Then what if we increase the number of servers to N? The birth rate remains the same while the death rate

shall be figured out by considering

D(i) = min {V1, ..., VN∧i} (161)

where actually N ∧ i servers are working given that i people are in the system and Vk denotes the serving time of the

k-th server. As a result, Vk ∼ E(µ) so D(i) ∼ E((N∧i)µ), providing us with µi = (N∧i)µ. Notice that when N = ∞,

µi = iµ, a process with constant birth and linear death. For M/M/∞ queue, qi = λ+ iµ, pi,i+1 = λ
λ+iµ , pi,i−1 = iµ

λ+iµ

and there’s no obvious way to judge if this process is regular. However, if we consider the recurrence of the underlying

discrete-time Markov chain {Xn}, it becomes a discrete-time BDC we have discussed. Let’s check that

∞∑
l=1

l∏
i=1

pi,i−1

pi,i+1
=

∞∑
l=1

l∏
i=1

i
µ

λ
=

∞∑
l=1

(µ
λ

)l
l! = ∞ (162)

proves that {Xn} is recurrent (and it’s irreducible) so this proves M/M/∞ queue is regular.

The last example to mention is the continuous-time branching process with immigration. Each particle

acts independently, waits E(q) time from it appears, after which it splits into two particles with probability p or

vanishes with probability 1− p. New particles immigrate into the system following a Poisson process with intensity

λ. Yt denotes the number of particles in the system at time t.
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In this example, given Yt = i, the holding time

T = min {L1, ..., Li, I} (163)

where L1, ..., Li ∼ E(q) are the times particles have to wait until they make a decision and I is the next arrival time

of immigrant. It’s clear that T ∼ E(λ + iq) so the holding rate qi = iq + λ. Now pi,i+1 is the probability that the

next transition is a birth, i.e. an immigrant comes in or a particle splits, so

pi,i+1 =
λ

λ+ iq
+ p

iq

λ+ iq
, pi,i−1 = 1− pi,i+1 (164)

so

λi = λ+ ipq, µi = i(1− p)q (165)

similar to the example above, let’s check if the underlying discrete-time Markov chain {Xn} is recurrent

∞∑
l=1

l∏
i=1

pi,i−1

pi,i+1
=

∞∑
l=1

l∏
i=1

i(1− p)q

λ+ ipq
=

∞∑
l=1

[(1− p)q]l
l∏

i=1

i

λ+ ipq
(166)

it seems hard to judge convergence from the first sight. It’s clear that ∃k ∈ N, λ ≤ kpq so

i

λ+ ipq
≥ 1

pq

i

i+ k
,

l∏
i=1

i

λ+ ipq
≥ (pq)−l

l∏
i=1

i

k + i
(167)

with

∞∑
l=1

l∏
i=1

pi,i−1

pi,i+1
≥

∞∑
l=1

(
1− p

p

)l
k!l!

(k + l)!
= ∞ (168)

iff p < 1
2 (calculate the ratio of the n+ 1-th term and the n-th term in the series). At least, we can claim that the

process is regular if p < 1
2 . Those examples show the connection between continuous-time and discrete-time BDC.

Lemma 16 (Exercise). Prove that for continuous-time branching process without immigration, i.e. λ = 0, the

process is regular if p ≤ 1
2 .
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Week 8

The Generator

As we have seen in the lecture, the (infinitesimal) generator of the continuous-time Markov chain {Yt} is defined

as

G = lim
h→0

Ph − I

h
(169)

where (Pt)ij = P (Yh = j|Y0 = i) is the transition probability matrix and I is the identity matrix. We have shown

that

Gij =

−qi if i = j

qipij else
(170)

so the generator provides another perspective for the dynamics of the Markov chain.

To see this, for a small enough h → 0,

pi,i(h) = P (Yh = i|Y0 = i) (171)

if the chain stays at the same state after a small enough time h, it either does not transit or it transits for multiple

times and then come back to the same state. However, transiting more than one time in time interval [0, h] has

probability

P (S2 < h|X0 = i,XS1
= j) = P

(
E1

qi
+

E2

qj
< h

)
(172)

≤ P
(
E1

qi
< h

)
P
(
E2

qj
< h

)
(173)

= (1− e−qih)(1− e−qjh) = o(h) (174)

where we used the Taylor expansion e−x = 1− x+ o(x) (x → 0). At this point, we are able to proceed and see that

pi,i(h) = P (Yh = i,no transition happens|Y0 = i) + o(h) (175)

= P
(
E1

qi
> h

)
+ o(h) (176)

= e−qih + o(h) = 1− qih+ o(h) (177)

using Taylor expansion once more. As a result,

pi,i(h) = 1 +Giih+ o(h) (178)
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and a similar argument shows

∀i ̸= j, pi,j(h) = P (Yh = j|Y0 = i) (179)

= P (Yh = j, one transition happens|Y0 = i) + o(h) (180)

= pij · P
(
E1

qi
< h

)
+ o(h) (181)

= pij · (1− e−qih) + o(h) (182)

= pijqih+ o(h) (183)

= Gijh+ o(h) (184)

where pij is the transition probability of the underlying discrete-time Markov chain {Xn}.
At this point, the interpretation of the generator should be a little bit clearer. The diagonal value of the generator

matrix Gii is the negative flow rate out of state i and the non-diagonal value Gij is the flow rate from state i

into state j. From the generator, we are actually viewing everything in terms of rate and it has completely captured

the drift effect of the Markov chain in terms of rate.

At this point, the backward Kolmogorov equation

P ′
t = GPt (185)

and the forward Kolmogorov equation

P ′
t = PtG (186)

characterizes transition probability P in terms of G so knowing the generator matrix is equivalent to knowing the

transition law of {Yt}.

Lemma 17 (Exercise). Argue from definition that for time-homogeneous continuous-time Markov chain {Yt}, its
transition probability satisfies Pt+s = PtPs = PsPt resulting in PtG = GPt.

Just to mention here, the backward and forward Kolmogorov equations is very similar to the ODE

y′ = ay (187)

whose solution is y(t) = Ceat. In analogue, one expects to see

Pt = etG (188)

with the exponential of the operator to be well-defined for G with enough regularity. This shows another connection

between the transition probability and the generator.

Remark. At this point, one might be wondering why the backward and forward Komogorov equations are important

since they seem to be similar to each other and does not have an intuitive explanation. This is mainly because we
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are currently in the setting of discrete-state Markov chain where Pt, G can still be represented as matrices (although

it’s possible countably infinite dimensional). When we are in the setting of continuous-time continuous-state Markov

chain, the state space is uncountable so there’s no possibility to organize everything in terms of matrices.

In that case, the Markov chain {Yt} is typically defined through an SDE (stochastic differential equation) and its

generator G is defined to totally capture the drift effect of the Markov process (the same motivation). The difference is

that such G no longer has matrix representation (a mapping from a countable dimensional space to another countable

dimensional space) but is actually an operator (a mapping from a function space to another function space). The

calculation of the generator requires stochastic calculus taught in the higher-level courses so we won’t be mentioning

it here but the backward and forward Kolmogorov equation still exists. Instead of being matrix-valued ODE, since the

state space is continuous, we would expect them to be PDE, which exactly gives birth to the Feynman-Kac formula

that connects SDE and PDE.

Lemma 18 (Exercise). From the fact that transition probability matrix Pt and generator matrix G has one-to-one

correspondence, prove that {Nt} is a Poisson process with intensity λ if and only if it is a continuous-time birth

death chain satisfying the following conditions:

N0 = 0 (189)

∀t > 0, h > 0,P (Nt+h −Nt ≥ 2) = o(h) (h → 0) (190)

∀t > 0, h > 0,P (Nt+h −Nt = 1) = λh+ o(h) (h → 0) (191)

Hint: try to write out birth death rate of Poisson process and use the interpretation above for the generator

matrix.

Remark. At this point, we should have seen at least three equivalent definitions of Poisson process. The first defines

it as a process with independent stationary Poisson increments, the second defines it with birth death rate (transition

probability of continuous-time Markov chain), the third defines it through the generator of continuous-time Markov

chain. Different characterizations are easy to use under different situations and one has to make proper decisions

which characterization to use. Two examples below illustrate why those characterizations might be useful.

Lemma 19 (Exercise). Using the characterization of Poisson process above, prove that the sum of two independent

Poisson process with intensity λ, µ respectively is still a Poisson process with intensity λ+ µ.

Lemma 20 (Exercise). Prove the thinning of Poisson process, i.e. let {Nt} be a Poisson process with intensity λ,

and now there is a Bernoulli classifier independent of the whole Poisson process labelling all arrivals into category 0

with probability p and category 1 with probability 1− p. {Mt} denotes the number of arrivals in category 0 until time

t, prove that Mt is still a Poisson process with intensity pλ.

Hint: Under the framework of continuous- time birth death chain, let BM
i be the time until next birth for process

{Mt} given that i individuals are in the system. It suffices to prove BM
i ∼ E(pλ). From the thinning procedure,

we have BM
i =

∑K
j=1 B

j
i where K ∼ G(p) follows geometric distribution and B1

i , B
2
i , ... are i.i.d. random variables

following E(λ) (birth time of Poisson process {Nt}).
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Week 9

Sample Problems for the Final

In my opinion, the core topics we have covered throughout the quarter can be categorized into the following:

• Poisson Process

• Discrete-time discrete-state Markov chain

• GWB branching process

• Continuous-time discrete-state Markov chain (in particular birth-death chain)

I will provide two relevant problems for each of the topic listed above. You are welcome to first solve those

problems on your own and then read my solution as reference. Please do not feel bad if you are finding those problems

to be hard, since the problems in the final exam will not be as hard as those. Please just view the reviewing

process as another chance to learn more things. I wish all of you good luck in the final.
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Lemma 21 (Example). N1(t), ..., Nn(t) are independent Poisson process with respective intensities λ1, ..., λn, now

the aggregated Poisson process N(t) =
∑n

i=1 Ni(t) has first arrival time T and J the index of the Poisson process

responsible for the first arrival. In other words,

T
def
= inf {t ≥ 0 : N(t) = 1} (192)

and J = i happens if and only if

Ni(T ) = 1 (193)

which means the first arrival of the aggregated Poisson process actually comes from the process NJ(t).

Show that T, J are independent and find their marginal distributions.

Proof. Let T1, ..., Tn be the first arrival times of N1(t), ..., Nn(t) respectively, it’s clear that they are independent and

Ti ∼ E(λi) (194)

as a result,

T = min {T1, ..., Tn} ∼ E(λ) (195)

where λ =
∑n

i=1 λi.

When it comes to J , it’s clear that J is a discrete r.v. with support {1, 2, ..., n}. Consider the joint distribution

of (T, J) that

P (T > t, J = j) = P (min {T1, ..., Tn} > t, J = j) (196)

= P (min {T1, ..., Tn} = Tj , Tj > t) (197)

= E[P (min {T1, ..., Tn} = Tj , Tj > t|Tj)] (198)

=

∫ ∞

0

P (min {T1, ..., Tn} = Tj , Tj > t|Tj = x) · fTj
(x) dx (199)

=

∫ ∞

t

P (min {T1, ..., Tn} = x|Tj = x) · fTj
(x) dx (200)

=

∫ ∞

t

P (min {T1, ..., Tj−1, Tj+1, ..., Tn} ≥ x|Tj = x) · fTj (x) dx (201)
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where we used the law of iterated expectation. The independence of T1, ..., Tn allows us to get rid of the condition∫ ∞

t

P (min {T1, ..., Tj−1, Tj+1, ..., Tn} ≥ x|Tj = x) · fTj
(x) dx (202)

=

∫ ∞

t

P (T1 ≥ x, ..., Tj−1 ≥ x, Tj+1 ≥ x, ..., Tn ≥ x) · fTj (x) dx (203)

=

∫ ∞

t

e−λx · eλjx · fTj
(x) dx (204)

= λj

∫ ∞

t

e−λx dx (205)

=
λj

λ
e−λt (206)

it’s clear that

P (J = j) = lim
t→0

P (T > t, J = j) =
λj

λ
, j ∈ {1, ..., n} (207)

and P (T > t, J = j) = P (T > t) · P (J = j) proves independence of T and J .

40



PSTAT 213 section notes written by Haosheng Zhou CONTENTS

Lemma 22 (Example). Let’s consider the famous ”coupon collector’s problem” where we have n different kinds of

pokemons indexed by {1, 2, ..., n}. Each time we encounter a pokemon, it’s gonna be uniformly random among all

possible kinds of pokemons and we always catch it. Let Xn denote the pokemon we catch on the n-th trial so that

X1, X2, ... are i.i.d. and uniformly distributed on {1, 2, ..., n}. Let T be the first time we have collected all n different

kinds of pokemons at least once, i.e.

T
def
= inf {m ≥ 1 : {X1, ..., Xm} = {1, ..., n}} (208)

(1): Calculate ET (Hint: geometric distribution).

(2): Despite the fact that ET can be easily calculated, it’s well-known that the distribution of T is hard to

find. As an example, calculating P (T ≤ m) (the probability that we have collected all different pokemons within m

trials) is very hard. However, a smart approach is to calculate P (T ≤ M) instead where M ∼ P (m) is a Poisson

distributed random integer independent of all the trials. In other words, we change the deterministic integer m to a

random integer M and calculate the probability that we have collected all different pokemons within a random number

M ∼ P (m) of trials. Try to calculate P (T ≤ M). (Hint: thinning of Poisson process)

(3): Argue why M ∼ P (m) is a reasonable approximation to m when m → ∞. (Hint: central limit theorem)

(4): Use the approximation in (2) and (3), prove ∀x ∈ R,P (T ≤ nx+ n log n) → e−e−x

(n → ∞). Check that

e−e−x

is actually a CDF on R (of the so-called Gumbel distribution). We have actually proved

T − n log n

n

d→ Gumbel (n → ∞) (209)

this is the asymptotic Gumbel approximation of the full collection time. From this one can reproduce a lot

of well-known results, for example T
n logn

p→ 1 (n → ∞) so asymptotically, collecting all n different kinds of pokemons

require n log n trials.

Proof. (1): We can decompose the stopping time T into the sum of stopping times. Let Ti be the first time we have

collected i different pokemons at least once. Then T = Tn so

T = T1 + (T2 − T1) + ...+ (Tn − Tn−1) (210)

where Ti − Ti−1 is the time we have spent towards collecting the i-th new kind of pokemon we have never collected

before. It’s clear that Ti − Ti−1 ∼ G(n−i+1
n ) since Ti − Ti−1 is the number of trials until we get the i-th new kind of

pokemon but that happens with probability n−i+1
n in each single trial (the i− 1 pokemons we have already collected

are not considered ”new”!).

As a result,

ET = ET1 + E(T2 − T1) + ...+ E(Tn − Tn−1) (211)

= 1 +
n

n− 1
+

n

n− 2
+ ...+

n

1
(212)
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so the expected time of full collection is

ET = n

n∑
i=1

1

i
(213)

(2): Now that M ∼ P (m) can be seen as the value of the Poisson process with intensity m at time 1. If we

add an independent classifier classifying the pokemon we collect into its index, each kind of pokemon appears with

uniform probability 1
n so the thinning of Poisson process tells us that Mi, the number of the i-th kind of pokemon

we have caught, satisfies

M1 + ...+Mn = M,Mi ∼ P
(m
n

)
(214)

and M1, ...,Mn are independent.

As a result,

P (T ≤ M) = P (M1 ≥ 1, ...,Mn ≥ 1) (215)

since T ≤ M means that after M trials we have collected all kinds of pokemons, i.e. the number of each kind of

pokemon we have caught is at least 1. Use independence,

P (T ≤ M) = [P (M1 ≥ 1)]n (216)

= (1− e−
m
n )n (217)

(3): M ∼ P (m) can be written as a summation of r.v.

M
d
= ξ1 + ...+ ξm (218)

where ξ1, ..., ξm
i.i.d.∼ P (1). By central limit theorem,

M −m√
m

d→ N(0, 1) (m → ∞) (219)

that’s to say, when m → ∞, M is most likely to be between [m − 3
√
m,m + 3

√
m]. Since

√
m has a much smaller

order than m, M is a reasonable approximation to m.

(4): Set m = nx + n log n, when n → ∞, m → +∞ so M is a reasonable approximation to m. From the
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calculation in (2),

P (T ≤ nx+ n log n) = P
(
T − n log n

n
≤ x

)
(220)

= (1− e−
nx+n log n

n )n (221)

=

(
1− e−x 1

n

)n

→ e−e−x

(n → ∞) (222)

if F (x) = e−e−x

, F (−∞) = e−∞ = 0, F (+∞) = e0 = 1, it’s continuous on R and is monotone increasing, a valid

CDF.

To see the final result,

∀x ∈ R,P (T ≤ nx+ n log n) = P
(
T − n log n

n
≤ x

)
→ F (x) (n → ∞) (223)

is the pointwise convergence of the CDF, which by definition implies convergence in distribution (if you don’t know

this part it’s completely fine, we will learn it in more detail in the next quarter).
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Lemma 23 (Example). Chung-Fuchs theorem in Markov chain theory tells us that for random walk {Sn} on R, if
the weak law of large number holds in the form Sn

n

p→ 0 (n → ∞), then {Sn} is a recurrent Markov chain.

(1): Use this fact to prove that if {Sn} is a discrete-time discrete-state random walk on R with S0 = 0 and i.i.d.

increments ξn = Sn − Sn−1 being integrable, i.e. ∀n,E|ξn| < ∞, then the asymptotic behavior of Sn must be in one

of the following cases with probability 1:

1. ∀n, Sn = 0

2. Sn → +∞ (n → ∞)

3. Sn → −∞ (n → ∞)

4. lim supn→∞ Sn = +∞, lim infn→∞ Sn = −∞
(2): Without mentioning any extra technical details, we would expect the conclusion above to hold without the

integrable condition, i.e. for increments ξ1 following any probability distribution, and to hold also for continuous-

state random walk, i.e. ξ1 can have a continuous probability distribution. In particular, if ξi has a symmetric

non-degenerated distribution w.r.t. the origin, case 4 always holds.

Under this situation, let’s consider a special kind of random walk where the increments ξ1, ξ2, ... are i.i.d. fol-

lowing the α-stable law which is a continuous symmetric distribution w.r.t. the origin. Let ϕ(t) = Eeitξ1 denote

the characteristic function of ξ1 (which we will learn more in the next quarter), assume we already know the

characteristic function ϕ(t) = e−|t|α (0 < α < 1), judge the convergence of the following integral∫ δ

−δ

1

1− ϕ(t)
dt (224)

for some δ > 0.

(3): A well-known result for the recurrence of random walk on R is that Sn is recurrent if and only if∫ δ

−δ

1

1− ϕ(t)
dt = ∞ (225)

for some δ > 0 where ϕ is the characteristic function of the increment. Apply this result for the α-stable random walk

in (2) and combine it with the conclusion from (1). What interesting results can you get for such kind of random

walk?

Proof. (1): Actually we just need to discuss the sign of the expectation of the increments µ = E|ξ1|. From strong

law of large number, with probability 1,

Sn

n
→ µ (n → ∞) (226)

if µ > 0, we are in case 2 and if µ < 0 we are in case 3. If ∀n, ξn = 0 a.s., we are in case 1 so it suffices to prove that

if µ = 0 but ξ1 has a nondegenerated distribution (not almost surely zero), then case 4 must happen.

In this case, from the law of large number and Chung-Fuchs theorem, {Sn} is recurrent, i.e. if we denote its
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state space as S ⊂ R,

∀s ∈ S,P (Sn = s i.o.) = 1 (227)

now that if we can prove S is unbounded with probability 1, then with probability 1 we can find a subsequence of

{Sn} with limit s for ∀s ∈ S, which implies that lim supn→∞ Sn = +∞, lim infn→∞ Sn = −∞.

Finally, we prove that the state space S must be unbounded for such a random walk. Since S is at most

countable, µ = 0 and r.v. ξ is non-degenerated, ∃a > 0,P (ξ1 = a) > 0. By the independence,

P (Sn = na) ≥ P (ξ1 = a, ..., ξn = a) = [P (ξ1 = a)]n > 0 (228)

so ∀n, na ∈ S proves S is unbounded from above. Similarly, S is unbounded from below which concludes the proof.

(2): The calculation is as follow ∫ δ

−δ

1

1− ϕ(t)
dt =

∫ δ

−δ

1

1− e−|t|α dt (229)

= 2

∫ δ

0

1

1− e−tα
dt (230)

it’s clear that e−tα ≤ 1− tα + t2α

2 so

∫ δ

0

1

1− e−tα
dt ≤

∫ δ

0

1

tα − t2α

2

dt < ∞ (231)

since 0 < α < 1. This proves ∫ δ

−δ

1

1− ϕ(t)
dt < ∞ (232)

(3): It’s immediate that α-stable random walk is transient from the calculation in (2).

Use the result in part (1), since α-stable law is symmetric w.r.t. the origin and non-degenerated, case 4 is true,

lim supn→∞ Sn = +∞, lim infn→∞ Sn = −∞ happens with probability 1.

There seems to be a ”contradiction” between those results. Transience implies that such α-stable random walk

only visits each state for finitely many times, however there is a fluctuation behavior, i.e. the value taken by this

random walk fluctuates in a large extent between −∞ and +∞. As a result, the fluctuation of this random walk

gets larger and larger as time goes by and there are great variations in its trajectories (the increments take extreme

values quite often) such that it’s transient despite the fact that it admits no particular ”trend”.
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Lemma 24 (Example). When it comes to the graph random walk, we always assume that an undirected connected

graph G is given. There are n vertices v1, ..., vn and each vertex vi has degree di, i.e. there are di edges on vi. Since

the graph is connected, any two vertices has a path connecting each other and ∀i, di ≥ 1. For simplicity, loops are

not allowed in the graph, i.e. an edge cannot connect a vertex vi to itself.

The graph random walk {Xn} starts at X0 = v1 and always transits along one of the associated edges to the next

vertex with equal probability.

(1): Write down the state space S and the one-step transition probability.

(2): Is this Markov chain irreducible? Recurrent? Positive recurrent?

(3): Is there a stationary distribution? Is the stationary distribution unique? Find the stationary distribution π

if it exists.

(4): Try to give an example of a graph G on which the graph random walk is not ergodic.

Proof. (1): Since the graph is connected, starting at v1, there is always positive probability of going to any other

vertex so S = {v1, v2, ..., vn}.
The one-step transition probability

pvi,vj = P (Xn+1 = vj |Xn = vi) (233)

is non-zero iff there is at least one edge connecting vi and vj denoted vi ∼ vj . In this case,

pvi,vj =
1

di
(234)

since there are di edges associated with vi and each edge has equal probability of being chosen.

(2): Since the graph is connected, the graph itself is just the transition diagram of this Markov chain, there is

only one communication class so it’s irreducible.

The state space is finite so there exists at least one recurrent state so the whole chain is recurrent. From the

finiteness of the state space, once more, the whole chain must be positive recurrent.

(3): Since the chain is irreducible and positive recurrent, the stationary distribution exists and is unique. In this

problem, it’s hard to write out the transition matrix so why don’t we depart from the invariant measure and then

normalize it to a stationary distribution.

By the definition of invariant measure µ,

n∑
i=1

µvipvi,vj = µvj (235)

and the LHS simplifies to

∑
i:vi∼vj

µvi

1

di
(236)

it’s obvious that by setting µvi
= di, we get on LHS

∑
i:vi∼vj

1 = dj = µvj . As a result, µvi = di gives an invariant
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measure. After normalization,

πvi =
di∑n
j=1 dj

(237)

gives the unique stationary distribution.

(4): For the graph random walk to be not ergodic, it’s equivalent to require it to be not aperiodic.

An easy example is the star graph where the node in the middle is v1 and has an edge with all other vertices

v2, ..., vn. This is a graph with n vertices and n− 1 edges. As a result, starting from v1, it’s only possible to return

back to v1 in 2, 4, 6, ... steps. Taking greatest common divisor to get the period 2 so this graph random walk is not

aperiodic.
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For branching process, especially the discrete-time branching process, there is not much to say. Keep in mind

the phase transitions and the way to calculate the extinction probability. Refer to lemma 3 and lemma 4 for two

important examples on discrete-time GWB branching process.

The following example is based on continuous-time branching process.

Lemma 25 (Example). Consider the continuous-time branching process with immigration and emigration denoted

{Xt} starting with X0 = 1. Each individual, after waiting for E(q) time, either splits into two individuals with

probability p or vanishes with probability 1 − p. The immigration is modelled by Poisson process with intensity λ

and the emigration is modelled by Poisson process with intensity µ. The immigration and emigration process are

independent of the individuals within the system.

(1): Model this process as a continuous-time birth death chain. Find birth/death rate, holding rate and the

transition probability of the underlying discrete-time Markov chain {Yn}.
(2): Assume µ = λ the intensity of immigration and emigration is the same and p = 1

2 , is this continuous-time

Markov chain regular?

(3): Provide a sufficient condition on p, q, λ, µ for the continuous-time Markov chain to be regular. Try to

interpret your result intuitively.

Proof. (1):

When there are i individuals in the system, the holding time is

min {W1, ...,Wi, I, E} (238)

where W1, ...,Wi ∼ E(q) are i.i.d. waiting times of each individual within the system, I is the time until next

immigration, I ∼ E(λ) and E is the time until next emigration, E ∼ E(µ). Since W1, ...,Wi, I, E are independent,

it’s clear that the holding time has distribution iq + λ+ µ, which is the holding rate

qi = iq + λ+ µ (239)

when it comes to the birth process, the time until next birth is

min {B1, ..., Bi, I} (240)

where B1, ..., Bi are i.i.d. waiting times until next birth of each individual within the system. Since the waiting time

W1, ...,Wi
i.i.d.∼ E(q), it can be seen as the interarrival time of a Poisson process with intensity q. With an independent

Bernoulli classifier B(1, p) added to each Poisson arrival, the thinning of Poisson process tells us the occurrence of

birth is a Poisson process with intensity pq. As a result, B1 ∼ E(pq), the same reasoning provides the birth rate

λi = ipq + λ (241)
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and the death rate

µi = i(1− p)q + µ (242)

let pi,i+1, pi,i−1 denote the one-step transition probability of the underlying discrete-time Markov chain, then

pi,i+1 =
λi

qi
=

ipq + λ

iq + λ+ µ
, pi,i−1 =

µi

qi
=

i(1− p)q + µ

iq + λ+ µ
(243)

(2):

This continuous-time Markov chain has infinitely many states and qi is not bounded so the only way to prove

regularity is to investigate the recurrence of the underlying discrete-time Markov chain {Yn}, which is a discrete-time

birth death chain.

It’s clear that the discrete-time birth death chain is recurrent iff
∑∞

l=1

∏l
i=1

pi,i−1

pi,i+1
= ∞.

Plug in the transition probability from part (1) to see

∞∑
l=1

l∏
i=1

pi,i−1

pi,i+1
=

∞∑
l=1

l∏
i=1

1
2 iq + µ
1
2 iq + λ

=

∞∑
l=1

1 = ∞ (244)

proves the regularity of {Xt}.
(3):

The continuous-time Markov chain is regular if
∑∞

l=1

∏l
i=1

pi,i−1

pi,i+1
= ∞, that’s to say,

∞∑
l=1

l∏
i=1

i(1− p)q + µ

ipq + λ
= ∞ (245)

it’s clear that when p < 1
2 , regardless of µ, λ, i(1− p)q+µ will be larger than ipq+λ for large enough i, so the chain

is regular. When p = 1
2 , clearly the regularity depends on the value of µ, λ, when µ ≥ λ, the chain is regular.

As a result, a sufficient condition for the chain to be regular is that p < 1
2 or p = 1

2 , µ ≥ λ.

Intuitively, a chain is regular if no explosion happens, i.e. the number of individuals in the system is not very

large. In the case where p < 1
2 , the population within the system tends to vanish. In this case, immigration and

emigration effects are negligible since the birth rate is dominated by the part ipq that grows as i grows. However, in

the case where p = 1
2 , i.e. birth and death of individuals within the system is balanced, immigration and emigration

effects play a role. When immigration rate is no larger than emigration rate, there is no explosion in the population.

49



PSTAT 213 section notes written by Haosheng Zhou CONTENTS

Lemma 26 (Example). {Xt} is a continuous-time birth death chain on N with birth rate λn and death rate µn.

Assume X0 = i ≥ 0 and Ti+1 is the first hitting time to the value i + 1 of the process. Derive a recursive formula

calculating mi
def
= EiTi+1 = E(Ti+1|X0 = i).

Proof. The recursive formula is derived by applying the Markov property. However, we have to set up the condition

in a smart way. One typical choice is to condition on the first holding time H1 so that we can discuss if the chain

goes up or goes down at the next transition

EiTi+1 = Ei[Ei(Ti+1|H1)] (246)

Keep in mind that the holding rate qi = λi + µi so H1 ∼ E(qi) since X0 = i. Conditioning on seeing the

transition happens at a certain time, the transition is either a birth or a death with probability λi

λi+µi
and µi

λi+µi

respectively.

At this point, it suffices to calculate

Ei(Ti+1|H1 = t) (247)

apply the law of total probability and the Markov property when i ≥ 1

Ei(Ti+1|H1 = t) = Pi (XH1 = i− 1|H1 = t)Ei(Ti+1|H1 = t,XH1 = i− 1) (248)

+ Pi (XH1 = i+ 1|H1 = t)Ei(Ti+1|H1 = t,XH1 = i+ 1) (249)

=
µi

λi + µi
Ei(Ti+1|H1 = t,XH1

= i− 1) +
λi

λi + µi
t (250)

=
µi

λi + µi
(t+ Ei−1Ti + EiTi+1) +

λi

λi + µi
t (251)

the last equation might seem confusing so we make some comments on that. If the state transition from i to i + 1

happens, the value of Ti+1 is observed. On the other hand, if the state transition from i to i− 1 happens, in order to

see the chain hit i+1, we must first see the chain return back to state i (since it’s a birth death chain, each transition

changes the state value by one!) and then restart the Markov chain at state i. In other words, t is the time we have

spent transiting to state i− 1, Ei−1Ti is the time we have to wait until the chain goes back to state i and EiTi+1 is

the time we have to wait after restarting the chain at state i. (Refer to the remark for a possible mistake you might

make)

At this point, we see that

mi = EiTi+1 =

∫ ∞

0

Ei(Ti+1|H1 = t) · fH1
(t) dt (252)

=

∫ ∞

0

(µi(t+mi−1 +mi) + λit) · e−qit dt (253)

=
1

qi
+

µi

qi
(mi−1 +mi) (254)
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after simplification

mi =
1

λi
+

µi

λi
mi−1 (255)

the recursive formula still need an initial condition. It’s not hard to see that when i = 0,

m0 = E0T1 =
1

λ0
(256)

since T1 is the time until next birth when X0 = 0, T1 ∼ E(λ0). As a result,m0 = 1
λ0

mi =
1
λi

+ µi

λi
mi−1 (i ≥ 1)

(257)

Remark. A common mistake one might make is the following. When i ≥ 1,

Ei(Ti+1|H1 = t) = Pi (XH1
= i− 1|H1 = t)Ei(Ti+1|XH1

= i− 1, H1 = t) (258)

+ Pi (XH1
= i+ 1|H1 = t)Ei(Ti+1|XH1

= i+ 1, H1 = t) (259)

=
µi

λi + µi
(t+ Ei−1Ti+1) +

λi

λi + µi
t (260)

the equation is correct but far from what we want since there’s no way to represent Ei−1Ti+1 using mi.

The trick here is to consider the excursion w.r.t. state i since any possibility of going from state i − 1 to

state i+ 1 shall pass state i for birth death chain (increments must take value ±1)!
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Lemma 27 (Example). {Xn} is discrete-time Markov chain on Z with no absorbing states, X0 = 0. Define T0 = 0,

Tm = inf
{
n ≥ Tm−1 : Xn ̸= XTm−1

}
(m ∈ N,m ≥ 1) (261)

as the time when Markov chain Xn changes its state for the m-th time.

(1): Show that ∀m,Tm are stopping times.

(2): Show that Zn = XTn
is a Markov chain, derive its transition probability.

Proof. (1): By the definition,

{T1 = k} = {X0 = X1 = ... = Xk−1 = 0, Xk ̸= 0} (262)

is an event only depending on X1, ..., Xk so T1 is a stopping time. Notice that T0 < T1 < T2 < ... so

{T2 = k} =

k−1⋃
j=1

{T1 = j, T2 = k} =

k−1⋃
j=1

{X0 = ... = Xj−1 = 0, Xj ̸= 0, Xj = Xj+1 = ... = Xk−1, Xk ̸= Xk−1} (263)

still only depends on X1, .., Xk so T2 is a stopping time. An induction argument concludes the proof.

(2): Let’s first prove Markov property

∀i0, ..., in,P (Zn = in|Zn−1 = in−1, ..., Z0 = i0) (264)

= P
(
XTn

= in|XTn−1
= in−1, ..., XT0

= i0
)

(265)

= P
(
XTn = in|XTn−1 = in−1

)
(266)

= P (Zn = in|Zn−1 = in−1) (267)

by strong Markov property of {Xn} since Tn, Tn−1, ..., T0 are stopping times and there is no absorbing states so

Tn−1 < ∞ happens with probability one.

For its transition probability,

pZij = P (Zn+1 = j|Zn = i) (268)

= P
(
XTn+1 = j|XTn = i

)
(269)

is zero if i = j. In the case where i ̸= j,

P
(
XTn+1

= j|XTn
= i
)

(270)

= P
(
XTn+1 = ... = XTn+1−1 = i,XTn+1

= j|XTn
= i
)

(271)

=

∞∑
l=1

P
(
Tn+1 − Tn = l,XTn+1 = ... = XTn+l−1 = i,XTn+1 = j|XTn = i

)
(272)

(273)
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here
{
XTn+1 = ... = XTn+l−1 = i,XTn+1 = j

}
is already implying {Tn+1 − Tn = l} so

P
(
XTn+1

= j|XTn
= i
)

(274)

=

∞∑
l=1

P
(
XTn+1 = ... = XTn+l−1 = i,XTn+1

= j|XTn
= i
)

(275)

=

∞∑
l=1

(pXii )
l−1pXij (276)

=
pXij

1− pXii
(277)

=
pXij∑
k ̸=i p

X
ik

(278)

finally we see the transition probability

pZij =


pX
ij∑

k ̸=i p
X
ik

if i ̸= j

0 else
(279)
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Lemma 28 (Example). When it’s sunny, wildfire occurs with rate 0.5 per day, when it’s cloudy, wildfire occurs with

rate 0.1 per day. Model the weather as a two-state continuous-time Markov chain with sunny weather lasting on

average for 2 days and cloudy weather lasting on average for 1 day. Wildfires happens at arrival time T1, T2, ... of a

continuous-time counting process and the weather is assumed to be independent of the wildfire occuring. Ft denote

the number of wildfires happening up to time t.

(1): Compute limt→∞
EFt

t .

(2): Explain why Xt = (St, Ft) is a Markov process and write down its generator matrix.

(3): Suppose it’s sunny now, find the expected time until next wildfire ET1. Compare with the answer from (1).

Proof. (1): The weather at time t is St with state space S = {s, c} for sunny and cloudy. It’s clear that if it’s sunny

now, the time until the next cloudy day follows E(qs) with mean 1
qs

= 2. Similarly, 1
qc

= 1 so the holding rates are

qs = 0.5, qc = 1 (280)

now the transition law of Ft depends on the value of St.

It’s also clear that only the behavior of EFt when t is large enough matters. So we care about the limiting

distribution of Ft which depends on the limiting distribution of St. Since {St} is irreducible, by ergodic theorem if

it has a stationary distribution, it must also be the limiting distribution.

Write out the generator matrix of {St},

G =

[
−0.5 0.5

1 −1

]
(281)

compute πG = 0 to get πs =
2
3 , πc =

1
3 , so the limiting distribution of St is known, i.e. when t is large enough, 2

3 of

the time it’s sunny and 1
3 of the time it’s cloudy.

As a result, when t is large enough, 2
3 of the time Ft is a Poisson process with intensity 0.5 and 1

3 of the time

Ft is a Poisson process with intensity 0.1

lim
t→∞

EFt

t
= lim

t→∞

2
3 t · 0.5 +

1
3 t · 0.1

t
=

1

3
+

1

30
=

11

30
(282)

(2): If Xt = (s, n), since {Ft} is a Poisson process (its intensity depends on {St}), it’s only possible to transit

to (c, n) or (s, n + 1). The holding time is the minimum of the holding time of state s in {St} and the holding

time of state n in {Ft}. Those two holding times are independent, the former holding time has distribution E(0.5)
and the latter one has distribution E(0.5) so taking minimum gives the holding time of state (s, n) with distribution

0.5 + 0.5 = 1, q(s,n) = 1. Similarly, we can derive the holding rate of all states

q(s,n) = 0.5 + 0.5 = 1, q(c,n) = 1 + 0.1 = 1.1 (283)
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for the underlying discrete-time Markov chain {Yn} with state space{s, c} × N, the transition probability is

p(s,n),(c,n) = 0.5, p(s,n),(s,n+1) = 0.5, p(c,n),(s,n) =
10

11
, p(c,n),(c,n+1) =

1

11
(284)

now we are clear with the dynamics of {Xt}, it’s clear that all holding times are independent and are still exponentially

distributed (memoryless), that’s why it’s still a Markov chain.

By definition, write down the generator matrix of {Xt}, notice that states in the row and column appear in the

order of (s, 0), (s, 1), (s, 2), ..., (c, 0), (c, 1), (c, 2), ...

G =



−1 1
2 0 ... 1

2 0 0 ...

0 −1 1
2 ... 0 1

2 0 ...

... ... ... ... ... ...

1 0 0 ... −1.1 0.1 0 ...

0 1 0 ... 0 −1.1 0.1 ...

... ... ... ... ... ...


(285)

(3): Now it’s sunny so X0 = (s, 0), consider the first holding time of {Xt} denoted R1, then R1 ∼ E(1) if

X0 = (s, 0) and R1 ∼ E(1.1) if X0 = (c, 0). Condition on R1 to calculate E(s,0)T1.

E(s,0)T1 = E(s,0)[E(s,0)(T1|R1)] (286)

it suffices to calculate E(s,0)(T1|R1 = r), by the law of total probability and Markov property

E(s,0)(T1|R1 = r) = P(s,0) (XR1
= (s, 1)|R1 = r)E(s,0)(T1|XR1

= (s, 1), R1 = r) (287)

+ P(s,0) (XR1
= (c, 0)|R1 = r)E(s,0)(T1|XR1

= (c, 0), R1 = r) (288)

=
1

2
r +

1

2
[r + E(c,0)T1] (289)

naturally, set up another equation for E(c,0)T1

E(c,0)(T1|R1 = r) = P(c,0) (XR1
= (c, 1)|R1 = r)E(c,0)(T1|XR1

= (c, 1), R1 = r) (290)

+ P(c,0) (XR1 = (s, 0)|R1 = r)E(c,0)(T1|XR1 = (s, 0), R1 = r) (291)

=
1

11
r +

10

11
[r + E(s,0)T1] (292)

apply the law of iterated expectation to get

E(s,0)T1 =

∫ ∞

0

(
1

2
r +

1

2
[r + E(c,0)T1]

)
e−r dr = 1 +

1

2
E(c,0)T1 (293)

E(c,0)T1 =

∫ ∞

0

(
1

11
r +

10

11
[r + E(s,0)T1]

)
1.1e−1.1r dr =

10

11
+

10

11
E(s,0)T1 (294)
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solve this linear system to get

E(s,0)T1 =
8

3
,E(c,0)T1 =

10

3
(295)

Compare with the answer from part (1), in long term, the rate of wildfire is 11
30 so the expected waiting time

until the next wildfire can be estimated by 30
11 ≈ 2.727. If it’s sunny now, the expected waiting time until the next

wildfire is 8
3 ≈ 2.667 which is smaller since wildfire is more likely to happen in sunny days. If it’s cloudy now, the

expected waiting time until the next wildfire is 10
3 ≈ 3.333 which is larger since wildfire is less likely to happen in

cloudy days.
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