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Week 1

This week we will review some of the important properties taught in 120A as a preparation for homework 0.

The first concept to review is the continuous and discrete random variables. Generally, a random variable

X(ω) : Ω → R (1)

is a mapping from the sample space to the real numbers, i.e. it assigns a value to each possible outcome of random

experiment. Discrete random variables can take countably many values while continuous random variables can take

uncountably many values. For example, if we want to consider the random variable X as the outcome after rolling

one dice, then we have to first specify the sample space, i.e. the set of all possible outcomes rolling one dice, which

should be Ω = {1, 2, ..., 6}. As a result, such random variable X is defined as

X(ω) = ω (2)

an identity map. Since X can only take values in {1, 2, ..., 6}, a finite set, it’s a discrete random variable.

To describe a single random variable, we have the cumulative distribution function (CDF) defined for any

random variable X as

F (x) = P (X ≤ x) (3)

Such F is always right-continuous, increasing and F (−∞) = 0, F (+∞) = 1 (try to explain the meaning of those

properties). In particular, for continuous random variable such F is continuous and for discrete random variable such

F is a step function. For continuous random variables, assume that F is nice enough to be differentiable so F ′ = f

gives the density that characterizes the distribution of the continuous random variable (for random vectors, those

concepts can be generalized).

To describe the relationship between two random variables, the most important property is independence. We

call X,Y independent if

∀x, y ∈ R,P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) (4)

which can also be explained in the sense of conditional probability (try to write the equality in the conditional form).

For discrete r.v. X,Y , they are independent if and only if ∀x, y ∈ R,P (X = x, Y = y) = P (X = x)P (Y = y) and

for continuous r.v. X,Y , they are independent if and only if fX(x)fY (y) = fX,Y (x, y) a.e. (think about why the

criterion for discrete r.v. does not hold for continuous r.v.).

The important concept to mention is the expectation of continuous or discrete random variables. For discrete

random variable X, assume that its distribution is given by

pk = P (X = ak) (k = 0, 1, ...) (5)
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so the expectation is formed as

EX =

∞∑
k=0

ak · P (X = ak) =

∞∑
k=0

ak · pk (6)

i.e., the sum of the product of the possible value ak taken by X and the probability of X taking value ak.

For discrete random variable X, assume that its density is f(x), so the expectation is formed as

EX =

∫
R
xf(x) dx (7)

i.e., the integral of the product of the possible value x taken by X and f(x), the likelihood of X taking value x. In

the homework, we will be asked to prove the linearity of expectation by using those definitions.

Another important concept is the variance, defined as

V ar(X) = E(X − EX)2 (8)

the connection between variance and expectation can be given by the useful formula that

V ar(X) = EX2 − (EX)2 (9)

for two random variables, we can define the covariance to describe their relationship

cov(X,Y ) = E[(X − EX)(Y − EY )] (10)

and a similar identity holds that

cov(X) = EXY − (EX)(EY ) (11)

note that cov(X,X) = V ar(X) and that cov(X,Y ) is bilinear, i.e. cov(aX + bY, Z) = a · cov(X,Z) + b ·
cov(Y,Z), cov(Z, aX + bY ) = a · cov(Z,X) + b · cov(Z, Y ) and symmetric, i.e. cov(X,Y ) = cov(Y,X). This is espe-

cially useful when computing the variance of a linear combination. For example, if we want to write V ar(2X + 3Y )

in terms of V ar(X), V ar(Y ),

V ar(2X + 3Y ) = cov(2X + 3Y, 2X + 3Y ) (12)

= 2cov(X, 2X + 3Y ) + 3cov(Y, 2X + 3Y ) (13)

= 2[2cov(X,X) + 3cov(X,Y )] + 3[2cov(Y,X) + 3cov(Y, Y )] (14)

= 4V ar(X) + 12cov(X,Y ) + 9cov(Y, Y ) (15)

you are asked to prove a more general version of this property in the homework.
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Finally, let’s talk about normal distribution. We say X ∼ N(µ, σ2) if it has density

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (x ∈ R) (16)

for the two parameters µ, σ2 of normal distribution, a direct interpretation is that EX = µ, V ar(X) = σ2. You can

try to prove those properties on your own by applying the definitions of expectation and variance to calculate the

integrals. A trick will be that when calculating the integral

EX =

∫
R
x

1√
2πσ

e−
(x−µ)2

2σ2 dx (17)

use the change of variables u = x−µ
σ to make the life easier

EX =

∫
R
x

1√
2πσ

e−
(x−µ)2

2σ2 dx (18)

=
1√
2πσ

σ

∫
R
(σu+ µ)e−

u2

2 du (19)

=
1√
2π

∫
R
(σu+ µ)e−

u2

2 du (20)

=
µ√
2π

∫
R
e−

u2

2 du (21)

= µ (22)

here we use the property that ue−
u2

2 is an odd function and that
∫
R e−

u2

2 du =
√
2π (this property can be deduced

from the standard normal density, en easy way to remember). The calculation of variance is left to the reader.

The standard normal CDF is one of the most frequently used notations in statistics. The definition is

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt =

∫ x

−∞

1√
2π

e−
t2

2 dt = P (G ≤ x) (G ∼ N(0, 1)) (23)

a property of Φ is that

∀x ∈ R,Φ(x) + Φ(−x) = 1 (24)

to see this, notice that 1√
2π

e−
t2

2 is an even function in t, so

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt =

∫ +∞

−x

1√
2π

e−
u2

2 du (u = −t) (25)

=

∫ +∞

−∞

1√
2π

e−
u2

2 du−
∫ −x

−∞

1√
2π

e−
u2

2 du (26)

= 1− Φ(−x) (27)
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Week 2

HW 0

For the problems in HW 0, let’s look at problem 6 and 7 briefly. The important fact used in problem 6 is that

for independent r.v. X,Y , it’s true that EXY = EX ·EY . Let’s prove this property for continuous random variables.

If X,Y are independent with density f, g, the joint density is h(x, y) = f(x)g(y)

EXY =

∫
R2

xyh(x, y) dx dy (28)

=

∫
R2

xyf(x)g(y) dx dy (29)

=

∫
R
xf(x) dx ·

∫
R
yg(y) dy (30)

= EX · EY (31)

one can also try to prove the property in the discrete case.

For problem 7, the main idea is to tell you that often it’s the case that you can greatly simplify the calculations by

applying the properties of expectation or variance. ForX ∼ N(µx, σ
2
x), Y ∼ N(µy, σ

2
y) independent, by independence,

the joint density is

f(x, y) = fX(x)fY (y) =
1√
2πσx

e
− (x−µx)2

2σ2
x

1√
2πσy

e
− (y−µy)2

2σ2
y (32)

the expectation can be calculated by linearity

E(aX + bY + c) = aEX + bEY + c = aµx + bµy + c (33)

the second moment computed with the variance identity

EX2 = V ar(X) + (EX)2 = σ2
x + µ2

x (34)

and the variance of linear combination is

V ar(aX + bY + c) = V ar(aX) + V ar(bY ) = a2σ2
x + b2σ2

y (35)

note that generally the variance of sum does not equal the sum of variance, here it holds because of independence

(actually this property holds if and only if X,Y are uncorrelated by the conclusion of problem 5).
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HW 1

Let’s talk about calculating the distribution of the transformation of a random variable. The most important

idea comes from the CDF method that focuses on deriving the CDF of the transformed r.v.

To see how this method works, let’s first look at some examples and then build up the theory for this method.

Now X ∼ N(0, 1), and we want to derive the PDF of Y = |X| and to calculate E|X|. The first step is to set

up the CDF of Y , denoted FY (y) = P (Y ≤ y), it’s obvious that when y < 0 the CDF always has value 0 so we only

have to consider the non-trivial case where y ≥ 0. Denote fX(x) as the density of X so fX(x) = 1√
2π

e−
x2

2

FY (y) = P (|X| ≤ y) = P (−y ≤ X ≤ y) =

∫ y

−y

fX(x) dx = 2

∫ y

0

fX(x) dx (36)

since fX(x) is an even function. Actually one does not have to calculate this integral, but to notice that PDF is the

derivative of CDF, so taking derivative w.r.t. y on both sides gives

fY (y) =
d

dy
FY (y) = 2

d

dy

∫ y

0

fX(x) dx = 2fX(y) =

√
2

π
e−

y2

2 (y ≥ 0) (37)

the calculation of expectation follows

EY =

∫ ∞

0

yfY (y) dy (38)

=

√
2

π

∫ ∞

0

ye−
y2

2 dy (39)

=

√
2

π

∫ ∞

0

e−
y2

2 d
y2

2
(40)

=

√
2

π

∫ ∞

0

e−u du (41)

=

√
2

π
(42)

Remark. Do not forget that the density for Y only works on [0,∞) so it’s necessary to label out y ≥ 0.

Remark. One might have to take the derivative of an integral with variables in the integration region a lot when

calculating the distribution of the transformation of r.v. As a result, one might find the following property from

calculus useful:

d

dx

∫ g(x)

f(x)

h(t) dt =
d

dx

∫ g(x)

0

h(t) dt− d

dx

∫ f(x)

0

h(t) dt (43)

= h(g(x))g′(x)− h(f(x))f ′(x) (44)

5



PSTAT 120B recitation notes written by Haosheng Zhou

to see this, one can consider p(x) =
∫ x

0
h(t) dt and

∫ g(x)

0
h(t) dt = p(g(x)), so

d

dx

∫ g(x)

0

h(t) dt =
d

dx
p(g(x)) (45)

= p′(g(x))g′(x) (46)

= h(g(x))g′(x) (47)

since p′(x) = h(x) by Newton-Lebniz formula. So this is actually just an application of the chain rule.

The example above tells us the way to apply the CDF method, now let’s build up the method in theory. Let’s

assume that we already know the PDF of X and want to get the PDF of Y = h(X) with h to be strictly monotone

increasing (this assumption is made to simplify the proof but not necessary).

FY (y) = P (Y ≤ y) = P (h(X) ≤ y) (48)

= P
(
X ≤ h−1(y)

)
(49)

=

∫ h−1(y)

−∞
fX(x) dx (50)

take derivative w.r.t. y on both sides to get

fY (y) =
d

dy
FY (y) (51)

=
d

dy

∫ h−1(y)

−∞
fX(x) dx (52)

= fX(h−1(y)) · d

dy
h−1(y) (53)

by the calculations we have already made in the remark above. (This is part of the homework problem 8, please try

to prove the other half when h is strictly decreasing on your own) Notice that the density has to be non-negative

and here since h is increasing, d
dyh

−1(y) has to be non-negative, making the density fY non-negative. For the case

where h is decreasing, there is a slight difference in the sign that you have to notice. In all, the general formula is

given by

fY (y) = fX(h−1(y)) ·
∣∣∣∣ ddyh−1(y)

∣∣∣∣ (54)

for any strictly monotone h and is called the transformation method.

Remark. Although this method directly comes from the CDF method, one will see that in multi-dimensional case

this method is much easier to generalize and to apply.

Now let me raise an example to show you how to apply this method. Consider X ∼ N(µ, σ2) and we want to find

the PDF of Y = X−µ
σ . It’s immediate that h(x) = x−µ

σ is a linear function so it’s strictly monotone, h−1(y) = σy+µ

6
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and d
dyh

−1(y) = 1
dh(y)
dy

= σ. Now it’s clear that fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , plug in the formula to see

fY (y) = fX(h−1(y)) ·
∣∣∣∣ ddyh−1(y)

∣∣∣∣ (55)

= σ · fX(σy + µ) (56)

=
1√
2π

e−
y2

2 (57)

as a result, we see that Y ∼ N(0, 1) is standard Gaussian. So we proved a very important scaling property of

Gaussian random variable that X ∼ N(µ, σ2) if and only if X−µ
σ ∼ N(0, 1).

The last method to talk about is the method of moment generating function (MGF). This method is

based on two properties of MGF defined as MX(t) = EetX . The first one is that MGF characterizes the distribution,

so two random variables have the same MGF if and only if they have the same distribution. The second one is that

for independent X,Y , MX+Y (t) = MX(t)MY (t) the MGF of the sum is the product of respective MGF. The MGF

method is especially effective for dealing with Gaussian random variables.

An example is that for Y1, Y2, ..., Yn ∼ N(0, 1) i.i.d., let’s calculate the distribution of Z = a1Y1+a2Y2+...+anYn.

One has to know that the MGF for N(µ, σ2) Gaussian r.v. is M(t) = eµt+
σ2

2 t2 (refer to the remark is you are not

familiar with this conclusion).

MZ(t) = Ma1Y1
(t)Ma2Y2

(t)...ManYn
(t) (58)

= Eeta1Y1Eeta2Y2 ...EetanYn (59)

= MY1(ta1)...MYn(tan) (60)

= e
a2
1
2 t2 ...e

a2
n
2 t2 (61)

= e
∑n

i=1 a2
i

2 t2 (62)

comparing with the MGF for N(µ, σ2), one immediately find that Z ∼ N(0,
∑n

i=1 a
2
i ). This is telling us that the

linear combination of independent Gaussian r.v. must still be Gaussian. (Try to do the same problem for

Yi ∼ N(µi, σ
2
i ) independent but not i.i.d. to see the conclusion that the linear combination is still Gaussian)

Remark. Let’s calculate the MGF for X ∼ N(µ, σ2)

MX(t) = EetX (63)

=

∫
R
etxfX(x) dx (64)

=
1√
2πσ

∫
R
etx−

(x−µ)2

2σ2 dx

(
u =

x− µ

σ

)
(65)

=
1√
2π

∫
R
et(σu+µ)−u2

2 du (66)

7
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extract the constant term etµ to continue

MX(t) =
1√
2π

etµ
∫
R
etσu−

u2

2 du (67)

=
1√
2π

etµ
∫
R
e−

1
2 (u

2−2tσu+t2σ2)+σ2

2 t2 du (68)

=
1√
2π

eµt+
σ2

2 t2
∫
R
e−

(u−tσ)2

2 du (v = u− tσ) (69)

=
1√
2π

eµt+
σ2

2 t2
∫
R
e−

v2

2 dv (70)

= eµt+
σ2

2 t2 (71)

8



PSTAT 120B recitation notes written by Haosheng Zhou

Week3

It’s always important that when calculating the distribution of the transformation of random variables, one

choose the method that fits the best with the problem. Now we have three methods: the CDF method, the

transformation method and the MGF method.

Generally, when dealing with the distribution of the sum of independent random variables, always use MGF

method. The reason is that the MGF of the sum of independent r.v. is always the product of respective MGF.

From the one-to-one correspondence between MGF and distribution, one would always find out the distribution of

the independent sum easily.

For transformation method, it’s always easy to apply when we see a transformation from Rn → Rn, mapping a

random vector of length n to another random vector of length n. The key point is that the dimension of the domain

and image space of the transformation should be the same (because it depends on the determinant of the Jacobian

as we will see later). As a result, transformation method won’t be applied for problem like deriving the distribution

of the sum of random variables, since it’s actually mapping (X1, ..., Xn) ∈ Rn to X1 + ... + Xn ∈ R. Moreover,

there’s some restrictions on the ’invertible’ property of the transformation. For example, Y = X2 has transformation

h(x) = x2 which is not invertible, so the transformation method will fail.

For distribution method, it’s the most general method but also the method with the most calculations involved.

It can be applied in all circumstances, regardless of the transformation function and the random variables one is

using. Problems like Y = |X|, Y = X2 can only be dealt with using the CDF method.

Let’s look at some problems that consider the distribution of the average of i.i.d. random variables Sn

n =
X1+...+Xn

n to get familiar with the MGF method.

Let’s first take X1 following the Bernoulli distribution B(1, p). Let’s first calculate the MGF of X1

MX1
(t) = EetX1 = 1− p+ pet (72)

so now we see that

MSn
n
(t) = Ee

Sn
n t = Ee

t
nSn = MSn

(
t

n

)
(73)

since Sn is i.i.d. sum, its MGF is the product of the respective MGF, so

MSn

(
t

n

)
=

[
MX1

(
t

n

)]n
= (1− p+ pe

t
n )n (74)

notice the trick to put the denominator n of Sn

n into the variable in the MGF.

Similarly, we can compute the example for Poisson distribution X1 ∼ P (λ)

MX1
(t) = EetX1 =

∞∑
k=0

etk
λk

k!
e−λ = eλe

t−λ (75)

9
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so now we see that

MSn
n
(t) = Ee

Sn
n t = Ee

t
nSn = MSn

(
t

n

)
(76)

since Sn is i.i.d. sum, its MGF is the product of the respective MGF, so

MSn

(
t

n

)
=

[
MX1

(
t

n

)]n
= enλe

t
n −nλ (77)

one might try to prove the additivity of Poisson distribution as an exercise (if ∀i = 1, 2, ..., n,Xi ∼ P (λi) are

independent random variables, then X1 + ...+Xn ∼ P (λ1 + ...+ λn)) using MGF.

10
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Week 4

Quiz Answer

1. We are playing a game of darts, where every throw results in the dart landing randomly somewhere on the

dartboard, which has a radius of 1. If we say that X is the horizontal coordinate and Y is the vertical coordinate

(both measured from the center/bullseye), then each throw results in a random pair (X,Y ) with a joint density of

fX,Y (x, y) =

 1
π x2 + y2 ≤ 1

0 else
(78)

(a) (6 points) What is the probability we are closer to the bullseye in the horizontal direction than in the vertical

direction?

solution. The probability is P (|X| < |Y |). Representing as the integral of joint density

P (|X| < |Y |) = 1

π

∫ ∫
x2+y2≤1,|x|<|y|

dx dy (79)

=
1

π
· area(x2 + y2 ≤ 1, |x| < |y|) (80)

=
1

π
· π
2
=

1

2
(81)

(b) (4 points) What is the marginal density of the vertical component, fY (y)

solution.

fY (y) =

∫ √
1−y2

−
√

1−y2

fX,Y (x, y) dx (82)

=
2

π

√
1− y2, y ∈ (−1, 1) (83)

2. Suppose that at the start of the week, the amount of gasoline (measured in 1K gallons) in the holding tank

of our neighborhood gas station can be represented by a random variable, G, with a uniform distribution over [0, 1]

(so the maximum possible is 1000 gallons of gasoline at the start of the week). Further, suppose that the amount

of gasoline sold by the gas station during the week can also be modeled with uniform random variable, Y , over the

interval [0, g1], where g1 is the particular amount at the start of the week.

(a) (5 points) Find the joint density function for the amount at the start of the week and the amount sold during

the week.

11
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solution. Now we know that G ∼ U(0, 1), Y |G=g1 ∼ U(0, g1) so

fY,G(y, g) = fG(g) · fY |G(y|g) =
1

g
, 0 < y < g < 1 (84)

(b) (5 points) If the station stocks 600 gallons at the start of the week, what is the probability they sell more

than 250 gallons?

solution. Condition on G = 0.6, Y ∼ U(0, 0.6), so

P (Y ≥ 0.25|G = 0.6) =

∫ 0.6

0.25

1

0.6
dy =

0.35

0.6
=

7

12
(85)

(c) (5 points) Find the marginal density of Y .

solution.

fY (y) =

∫ 1

y

fY,G(y, g) dg =

∫ 1

y

1

g
dg = − log y, y ∈ (0, 1) (86)

(d) (5 points) If we know that the station sold 250 gallons of gasoline, what is the probability that they had

more than 500 gallons at the start of the week?

solution. In order to get P (G ≥ 0.5|Y = 0.25), let’s first derive the conditional density fG|Y (g|y)

fG|Y (g|y) =
fY,G(y, g)

fY (y)
=

1

− log y · g
, 0 < y < g < 1 (87)

so now

P (G ≥ 0.5|Y = 0.25) =

∫ 1

0.5

fG|Y (g|0.25) dg (88)

=

∫ 1

0.5

1

− log 0.25 · g
dg (89)

=
log 0.5

log 0.25
=

1

2
(90)

(e) (5 points) What is the expected amount of gasoline we will have left at the end of the week?

12
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solution.

E(G− Y ) = EG− EY (91)

where EG = 1
2 and EY = E[E(Y |G)] = EG

2 = 1
4 , so E(G− Y ) = 1

4 .

3. The hens at Lilly’s Cage-free Egg Farm produce eggs according to a Poisson distribution, with a mean of β

per day. Because the hens are allowed to roam free, and not kept in cages, they lay their eggs around the barnyard

which increases the chance that they will break. The eggs survive to be collected with some probability p.

(a) (5 points) Find the expected number of eggs that will survive to be collected.

solution. Assume there are N ∼ P (β) eggs laid and C eggs collected. So C|N=n ∼ B(n, p).

EC = E[E(C|N)] = EpN = pEN = pβ (92)

(b) (5 points) Find the variance for the number of eggs that will survive to be collected.

solution.

EC2 = E[E(C2|N)] (93)

now E(C2|N) = V ar(C|N) + [E(C|N)]2 = Np(1− p) +N2p2 so

EC2 = E[E(C2|N)] = ENp(1− p) + EN2p2 (94)

= p(1− p)EN + p2EN2 (95)

= p(1− p)β + p2(β2 + β) (96)

since EN2 = V ar(N) + (EN)2 = β2 + β, so

V ar(C) = EC2 − (EC)2 = p(1− p)β + p2(β2 + β)− p2β2 (97)

= p(1− p)β + p2β = pβ (98)

Central Limit Theorem

CLT only works for i.i.d. random variable series that has finite second moment. The limiting distribution

of Sn−ESn√
V ar(Sn)

is always N(0, 1). When one wants to apply CLT, first verify that the random variable series is i.i.d.,
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then verify that second moment exists. If those two conditions hold, one only need to calculate the expectation and

the variance of the sum Sn = X1 + ...+Xn to write out the normal approximation.

For example, if we have X1, ..., Xn ∼ P (λ) i.i.d., since V ar(X1) = λ < ∞, CLT holds and we compute

ESn = nEX1 = nλ (99)

V ar(Sn) = nV ar(X1) = nλ (100)

to conclude that

Sn − nλ√
nλ

d→ N(0, 1) (n → ∞) (101)

which means that when n is large enough, the following approximation that

P
(
Sn − nλ√

nλ
≤ x

)
→ Φ(x) (n → ∞) (102)

works for standard Gaussian CDF Φ. If we simplify the expression, we can see that
√
n(Xn − λ)

d→ N(0, λ).

Now if we have paired observations X1, ..., Xn, Y1, ..., Yn to be independent and Xi all have the same distribution

N(µ1, σ
2
1), Yi all have the same distribution N(µ2, σ

2
2), then we can consider Sn = (X1 − Y1) + ...+ (Xn − Yn) to see

that X1 − Y1, ..., Xn − Yn are i.i.d. with V ar(X1 − Y1) = σ2
1 + σ2

2 < ∞ so CLT holds. Compute

ESn = n(µ1 − µ2) (103)

V ar(Sn) = n(σ2
1 + σ2

2) (104)

to get the conclusion that

Sn − n(µ1 − µ2)√
n(σ2

1 + σ2
2)

d→ N(0, 1) (n → ∞) (105)

divide numerator and denominator by n to see

√
n[(Xn − Y n)− (µ1 − µ2)]√

(σ2
1 + σ2

2)

d→ N(0, 1) (n → ∞) (106)

Remark. The simplest CLT does not hold for X1, ..., Xn, Y1, ..., Yn since they are independent but not identically

distributed. However, if we notice the fact that they are paired samples, we can consider the difference Xi − Yi as a

new random variable series so now it’s i.i.d..
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Week 5

Bias Variance Decomposition

For any estimator θ̂ = θ̂(X), X = (X1, ..., Xn) that estimates the true parameter θ, we hope to set up a criterion

for selecting the best estimator. A frequently used criterion is the mean square error

MSE(θ̂) = E(θ̂ − θ)2 (107)

and it’s important to realize that the mean square error always has the bias variance decomposition

MSE(θ̂) = E(θ̂ − θ)2 (108)

= E(θ̂ − Eθ̂ + Eθ̂ − θ)2 (109)

= E(θ̂ − Eθ̂)2 + E(Eθ̂ − θ)2 + 2E[(θ̂ − Eθ̂)(Eθ̂ − θ)] (110)

= V ar(θ̂) +Bias2(θ̂) (111)

since E[(θ̂−Eθ̂)(Eθ̂− θ)] = (Eθ̂− θ)(Eθ̂−Eθ̂) = 0. This is showing some kind of trade-off between unbiasedness

and efficiency under a fixed MSE. If one wants to find an unbiased estimator, one always has to sacrifice some

kind of efficiency, while if one wants to find an efficient estimator, it may be seriously biased(the trivial estimator

θ̂ = 0 always has zero variance but may be significantly biased).

Let’s see an example in the textbook exercise 8.20 where Y1, ..., Y4 ∼ E
(
1
θ

)
and we want to estimate the parameter

θ. Now X =
√
Y1Y2 and we want to find a multiple of X which is unbiased.

Let’s first calculate EX = E2
√
Y1. Note that

E
√
Y1 =

∫ ∞

0

√
y
1

θ
e−

y
θ dy (112)

=
√
θ

∫ ∞

0

√
ue−u du

(
u =

y

θ

)
(113)

=
√
θ · Γ

(
3

2

)
(114)

=
√
θ · 1

2
Γ

(
1

2

)
(115)

=

√
θπ

2
(116)

as a result, EX = θπ
4 and E 4

π

√
Y1Y2 = θ so 4

π

√
Y1Y2 is unbiased.

Remark. Recall from calculus the form of Gamma function that

Γ(s) =

∫ ∞

0

xs−1e−x dx (s > 0) (117)
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and the property that ∀p ∈ (0, 1),Γ(p)Γ(1− p) = π
sin pπ so Γ

(
1
2

)
=

√
π (or directly from the hint).

For another example, refer to exercise 8.36 in the textbook. Y1, ..., Yn follow E
(
1
θ

)
so we now that

EY1 = θ, V ar(Y1) = θ2,EY = θ, V ar(Y ) =
θ2

n
(118)

now we want to construct unbiased estimator for θ and provide an estimate for the standard error of this estimator.

Now we want the expectation of the estimator to be θ so it’s quite obvious that Y1 is just an unbiased estimator.

To find the standard error

se(Y1) = θ (119)

since θ it self is unknown, it can be estimated in various ways. We can take Y as an unbiased estimation of θ so the

estimated standard error is

ŝe(Y1) = Y (120)

we can also take sample variance S2 as an estimation of θ2 so the estimated standard error is

ŝe(Y1) =
√
S2 (121)

there’s no fixed way to estimate the standard error so you can put up any reasonable ways to do it! On the other

hand, the choice of unbiased estimator is also not unique, Y1 is unbiased, but Y is also unbiased, one may also choose

the sample mean as the operator and try to calculate the estimated standard error.

Consistency

Estimator θ̂ is called a consistent estimator if

θ̂
p→ θ (n → ∞) (122)

which means that ∀ε > 0,P
(
|θ̂ − θ| ≥ ε

)
→ 0 (n → ∞), this convergence is called convergence in probability.

Since convergence in probability is preserved under addition, subtraction, multiplication, division and actually

any continuous mapping (continuous mapping theorem), consistency is typically easy to get. In other words, if θ̂1, θ̂2

are consistent estimators of θ, then θ̂1+θ̂2
2 is still a consistent estimator.

By what we have learnt so far, sample variance S2 is an unbiased consistent estimator of population variance

σ2, so S is a consistent estimator of σ (apply the continuous function g(x) =
√
x on both sides). However, note

that S is not an unbiased estimator of σ! (since generally E
√
X ̸=

√
EX)

We raise and example next to illustrate the way to construct a consistent estimator and to prove its consistency.

For sample Y1, ..., Yn with EY1 = µ, V ar(Y1) = σ2, we want to estimate EY 2
1 consistently.
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A natural estimator comes from the sample mean of second moments

T =

∑n
i=1 Y

2
i

n
(123)

and to show its consistency, it directly follows from WLLN that since EY 2
1 < ∞

T
p→ EY 2

1 (n → ∞) (124)

Efficiency

We say an estimator is more efficient than the other estimator is it has lower variance with the relative efficiency

defined as

eff(θ̂1, θ̂2) =
V ar(θ̂2)

V ar(θ̂1)
(125)

in this course we just need to learn to calculate the relative efficiency between two given estimators.

For example, if Y1, ..., Yn are from a population with mean µ and variance σ2, if we have µ̂2 = 1
4Y1+

Y2+...+Yn−1

2(n−2) +
1
4Yn and µ̂3 = Y , then

V ar(µ̂3) =
V ar(Y1)

n
=

σ2

n
(126)

V ar(µ̂2) =
1

16
σ2 +

n− 2

4(n− 2)2
σ2 +

1

16
σ2 =

1

8
σ2 +

1

4(n− 2)
σ2 (127)

so

eff(µ̂3, µ̂2) =
V ar(µ̂2)

V ar(µ̂3)
=

n

8
+

n

4(n− 2)
(128)
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Week 6

Quiz 2

1.

Suppose we can model n wait times for the 24X (bus) as Y1, Y2, ..., Yn i.i.d. Exponential random variables with

mean β. We want to assess how well the Central Limit Theorem approximates the exponential distribution.

(a) (5 points) First, let’s consider the standardized sample mean
√
n(Y−β)

β as a random variable, write an

expression, denoted F̃ (c), to approximate the CDF F (c) = P
(√

n(Y−β)
β ≤ c

)
and calculate F̃ (2.65).

solution. Since Y1, ..., Yn are i.i.d. with V ar(Y1) = β2 < ∞, we can apply the CLT. Since EY = EY1 = β, V ar(Y ) =
V ar(Y1)

n = β2

n , we know that

√
n(Y − β)

β

d→ N(0, 1) (n → ∞) (129)

and the approximation holds F̃ (c) = Φ(c) where Φ is standard Gaussian CDF.

F̃ (2.65) = Φ(2.65) = 0.99598.

(b) (5 points) Find c∗ in terms of c and β such that F (c) = P
(
nY ≤ c∗

)
. How can you calculate F (c) exactly?

(Hint: what is the sampling distribution of nY ?)

solution.

F (c) = P
(√

n(Y − β)

β
≤ c

)
= P

(
Y ≤ β +

cβ√
n

)
= P

(
nY ≤ nβ

(
1 +

c√
n

))
(130)

so c∗ = nβ
(
1 + c√

n

)
.

Notice that Y1 ∼ E
(

1
β

)
= Γ

(
1, 1

β

)
and if Y1, ..., Yn ∼ Γ

(
1, 1

β

)
i.i.d., then Y1 + ... + Yn ∼ Γ

(
n, 1

β

)
. (the

additivity of Gamma distribution w.r.t. parameter α, one may prove it using MGF)

F (c) = FG(c
∗) (131)

where FG is the CDF of distribution Γ
(
n, 1

β

)
.

(c) (3 points) For each of the values of n in the table below, calculate the exact probability, F(2.65) and fill in

the first empty column. Then, find the distance (absolute difference) between that value and the approximation you

found above. Calculate for n = 3, 9, 36, 121, 169 and β = 1.
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solution. Now

F (c) = FG(c
∗) (132)

where FG is the CDF of distribution Γ (n, 1) and c = 2.65 is fixed, so c∗ = n
(
1 + 2.65√

n

)
.

When n = 3, c∗ = 3
(
1 + 2.65√

3

)
= 7.59, so F (c) = FG(7.59) = 0.9811.

When n = 9, c∗ = 9
(
1 + 2.65√

9

)
= 16.95, so F (c) = FG(16.95) = 0.98704.

When n = 36, c∗ = 36
(
1 + 2.65√

36

)
= 51.9, so F (c) = FG(51.9) = 0.9916.

When n = 121, c∗ = 121
(
1 + 2.65√

121

)
= 150.15, so F (c) = FG(150.15) = 0.99366.

When n = 169, c∗ = 169
(
1 + 2.65√

169

)
= 203.45, so F (c) = FG(203.45) = 0.99403.

So the difference |F (2.65)− F̃ (2.65)| changes like 0.01488, 0.00894, 0.00438, 0.002332, 0.00195.

(d) (2 points) I’ve said in lecture that the central limit theorem approximation is good when n is “large enough”.

As we increased the sample size, what did you notice about the difference between the approximation and the exact

probability? How large of an n value would you think is sufficient to be “good” and why?

solution. By setting the error tolerance limit as 1%, n = 9 suffices. (There’s no unique criteria, just set up an

appropriate one you prefer)

2. (10 points) The client manager at the law firm of Dewey, Cheatem and Howe sends out bids to their larger

clients for particular legal needs. (E.g., preparing the paperwork for a merger.) Because these bids are worded as

“Price not to exceed...”, they need to be careful about their estimation for the hours needed to fulfill the particular

task so they don’t lose money. Suppose we let X be the amount of paralegal hours required for a project, and

suppose further, that those hours are normally distributed with a mean of 16 hours and a standard deviation of 4

hours. Now, suppose that Y is the amount of attorney hours required for a job, and that the hours are normally

distributed with a mean of 10 and a standard deviation of 6 hours. The hourly rate for the paralegals is $85 while

the hourly rate for the attorneys is $175. We also must include an overhead charge equal to $500, to all jobs we bid.

Then we can write the cost equation as, cost = 85X + 175Y + 500.

(a) (8 points) If X and Y are independent, how much should the client manager bid so that the probability of

losing money is 0.05 (we lose money when the costs exceed the amount of the bid).

solution. B denotes the amount of the bid, X ∼ N(16, 16), Y ∼ N(10, 36), want to find B such that

0.05 = P (85X + 175Y + 500 ≥ B) (133)

notice that the linear combination of two independent Gaussian random variables 85X + 175Y is still Gaussian, so
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calculate its expectation and variance to see

E(85X + 175Y ) = 85× 16 + 175× 10 = 3110 (134)

and the variance

V ar(85X + 175Y ) = 852 × 16 + 1752 × 36 = 1218100 (135)

so 85X + 175Y ∼ N(3110, 1218100).

P (85X + 175Y + 500 ≥ B) = P (85X + 175Y ≥ B − 500) (136)

= P
(
85X + 175Y − 3110√

1218100
≥ B − 500− 3110√

1218100

)
(137)

= 1− Φ

(
B − 500− 3110√

1218100

)
= 0.05 (138)

so now B−500−3110√
1218100

= 1.65 and B = 5431.065.

(b) (2 points) Does the independence of the paralegal hours and attorney hours seem reasonable? Why or why

not? (No calculations are necessary, just explain what your intuition tells you.)

solution. Just make reasonable explanations.

3. (15 points) Imagine X1, X2, ..., Xn are a random sample (of size n) of McConnell’s ice cream scoop weights,

and they are normally distributed with a mean µX and variance σ2
X . Now, let Y1, Y2, ..., Ym be a random sample

(of size m) of Rory’s ice cream scoop weights, and they are also normally distributed, but with a mean of µY and a

variance of σ2
Y .

(a) (5 points) Find the expected value of the difference between the two sample means.

solution.

E(X − Y ) = EX1 − EY1 = µX − µY (139)

(b) (5 points) Find the variance of the difference between the two sample means.

solution. By the independence between two samples,

V ar(X − Y ) = V ar(X) + V ar(Y ) (140)

=
V ar(X1)

n
+

V ar(Y1)

m
=

σ2
X

n
+

σ2
Y

m
(141)
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(c) (5 points) Now, suppose that σ2
X = 1.21(grams2) and σ2

Y = 0.81(grams2), and that we have equal sized

samples. Find the sample sizes so that the difference in sample means will be within 1 gram of the difference in

population means, with a probability of 0.90.

solution. Now m = n and we want to find n such that

P
(∣∣(X − Y )− (µX − µY )

∣∣ ≤ 1
)
= 0.9 (142)

now notice that X − Y ∼ N
(
µX − µY ,

σ2
X+σ2

Y

n

)
is Gaussian so

P
(∣∣(X − Y )− (µX − µY )

∣∣ ≤ 1
)
= P

(
−1 ≤ (X − Y )− (µX − µY ) ≤ 1

)
(143)

= P

−
√

n

σ2
X + σ2

Y

≤ (X − Y )− (µX − µY )√
σ2
X+σ2

Y

n

≤
√

n

σ2
X + σ2

Y

 (144)

= Φ

(√
n

σ2
X + σ2

Y

)
− Φ

(
−
√

n

σ2
X + σ2

Y

)
(145)

= 2Φ

(√
n

σ2
X + σ2

Y

)
− 1 = 0.9 (146)

so
√

n
σ2
X+σ2

Y
= Φ−1(0.95) = 1.65 and n = 1.652(σ2

X + σ2
Y ) = 5.5. So we need at least 6 samples.

Fisher Information and Cramer-Rao Bound

Those two concepts appear since we want to find the minimum variance unbiased estimator (MVUE).

Consider f(y; θ) as the joint likelihood, then the log-likelihood is l(y; θ) = log f(y; θ) and the score function

is defined as S(θ; y) = d
dθ l(y; θ) is the changing rate of the log-likelihood. So the variance of the score function is

defined as the Fisher information

I(θ) = V ar(S(θ;Y )) = V ar

(
d

dθ
l(Y ; θ)

)
= E

(
d

dθ
l(Y ; θ)

)2

(147)

since E
(

d
dθ l(Y ; θ)

)
= 0. Another formulation of Fisher information is given by

−E
d2

dθ2
l(Y ; θ) = I(θ) (148)

so we just need to derive log-likelihood, take second-order derivative w.r.t. θ, take expectation and add negative sign

to get the Fisher information. Such formula for Fisher information also tells us that if we have Y1, ..., Yn as i.i.d.
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samples, to calculate the Fisher information

I(θ) = −E
d2

dθ2
l(Y1, ..., Yn; θ) (149)

= −E
d2

dθ2

n∑
i=1

l(Yi; θ) (150)

=

n∑
i=1

−E
d2

dθ2
l(Yi; θ) (151)

=

n∑
i=1

Ii(θ) = nI1(θ) (152)

since the Fisher information on seeing each sample is the same. This shows that for i.i.d. samples we just need to

calculate the Fisher information of one of them and multiply by sample size.

The Cramer-Rao bound connects the variance of the estimator with Fisher information

V ar(θ̂) ≥

(
d
dθEθ̂

)2

I(θ)
(153)

so if θ̂ is an unbiased estimator of θ, then V ar(θ̂) ≥ 1
I(θ) . So any unbiased estimator that can attain this bound is

called MVUE.

Example

Let’s consider the Fisher information of exponential distribution with likelihood f(y; θ) = 1
θ e

− y
θ so the log-

likelihood is

l(y; θ) = − log θ − y

θ
(154)

and take second derivative

d2

dθ2
l(y; θ) =

d

dθ

(
−1

θ
+

y

θ2

)
=

1

θ2
− 2y

θ3
(155)

now compute Fisher information for single sample

I1(θ) = E
(
− 1

θ2
+

2Y

θ3

)
(156)

= − 1

θ2
+

2

θ2
=

1

θ2
(157)
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so the Fisher information for Y1, ..., Yn is I(θ) = n
θ2 and the Cramer-Rao bound for unbiased estimator θ̂ is given by

V ar(θ̂) ≥ 1

I(θ)
=

θ2

n
(158)

we will see that since the sample mean V ar(Y ) = θ2

n , it’s MVUE.

Another example for Pareto distribution with likelihood f(y; θ) = 2θ2

y3 (y > θ), log-likelihood is

l(y; θ) = log 2 + 2 log θ − 3 log y (159)

and take second derivative

d2

dθ2
l(y; θ) =

d

dθ

2

θ
= − 2

θ2
(160)

now compute Fisher information for single sample

I1(θ) = E
2

θ2
(161)

=
2

θ2
(162)

so the Fisher information for Y1, ..., Yn is I(θ) = 2n
θ2 and the Cramer-Rao bound for unbiased estimator θ̂ is given by

V ar(θ̂) ≥ 1

I(θ)
=

θ2

2n
(163)

Sufficiency

A statistic T = T (X1, ..., Xn) is sufficient if X|T does not depend on parameter θ, which means that on knowing

the information contained in statistic T , the original parameter is no longer useful for figuring out the distribution

of the sample, so one can always reduce the sample to the sufficient statistic if the parametric model is known. From

this definition, we develop the important factorization theorem that says T is sufficient if and only if

f(x; θ) = gθ(T (x)) · h(x) (164)

the joint likelihood can be decomposed into the product of g that only contains θ, T (x) and h that only contains x.

As a result, if a function contains x, θ at the same time and cannot be decomposed further into products, it has to

be contained in gθ(T (x)).

Remark. Be careful with the support of random variables when figuring out sufficiency, some random variables’

support depends on the parameter!
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Example

Consider X1, ..., Xn ∼ U(0, θ) so

f(x; θ) =
1

θn
I0<x1,...,xn<θ (165)

=
1

θn
Imin{x1,...,xn}>0,max{x1,...,xn}<θ (166)

= gθ(T (x)) · h(x) (167)

with h(x) = Imin{x1,...,xn}>0, gθ(T (x)) =
1
θn Imax{x1,...,xn}<θ, so naturally we see that T (X) = max {X1, ..., Xn} is the

sufficient statistic for this distribution.
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Week 7

Minimal Sufficiency

A minimal sufficient statistic is a sufficient statistic which is the function of any other sufficient statistics.

Note that sufficient statistic already contains all the information of the sample distribution without replying on the

value of parameter, so the minimal sufficient statistic is actually the sufficient statistic that contains the ”minimal

amount of information”.

Remark. To understand the definition, for any random sample observation, let’s say 1,2,3. A function of this sample

(let’s say the sum) can always be calculated, which is 1+2+3=6. However, on knowing the sum of the samples to

be 6, one can not figure out which three realizations the sample gives, it can be 1,2,3, it can also be 2,2,2, etc. This

explains the fact that a function of a statistic cannot contain more information than that statistic itself.

The formal definition of minimal sufficient statistic T ′ is that it’s sufficient and for any other sufficient statistic

T , it’s always true that if T (X) = T (Y ) then T ′(X) = T ′(Y ). The minimal sufficient statistic is always found by the

following theorem.

Theorem 1. (Lehmann-Scheffe) T is a minimal sufficient statistic if and only if L(x1,...,xn;θ)
L(y1,...,yn;θ)

is independent of θ

is equivalent to saying T (x1, ..., xn) = T (y1, ..., yn).

Let’s illustrate the way to apply this method in practice by looking at examples. Let’s considerX1, ..., Xn ∼ P (λ)

so the likelihood ratio is

λ
∑

i xie−nλ

λ
∑

i yie−nλ
= λ

∑
i xi−

∑
i yi (168)

is independent of λ if and only if
∑

i xi −
∑

i yi = 0, so by taking T (X) =
∑

i Xi, it must be minimal sufficient.

Let’s consider another example X1, ..., Xn ∼ U(θ − 1, θ + 1) so the likelihood ratio is

1
2n Ix1,...,xn∈(θ−1,θ+1)

1
2n Iy1,...,yn∈(θ−1,θ+1)

=
Imin{x1,...,xn}>θ−1

Imin{y1,...,yn}>θ−1

Imax{x1,...,xn}<θ+1

Imax{y1,...,yn}<θ+1
(169)

is independent of θ if and only if min {x1, ..., xn} = min {y1, ..., yn} ,max {x1, ..., xn} = max {y1, ..., yn}. So T (X) =

(min {X1, ..., Xn} ,max {X1, ..., Xn}) is minimal sufficient.

Moment Estimator

Moment estimator is simply calculating population moments and match them with sample moments to get the

estimators of the parameters. However, some distributions do not even have the first moment (Cauchy), so the

application of moment estimator is actually restricted.

To illustrate the moment estimator, consider examples X1, ..., Xn ∼ P (λ), the population first moment is λ and

the sample first moment is X so λ̂ = X is the moment estimator.
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Consider X1, ..., Xn ∼ U(0, θ), the population first moment is θ
2 and the sample first moment is X so θ̂ = 2X.

However if X1, ..., Xn ∼ U(−θ, θ), then population mean is always 0 so there’s no way to match 0 with the sample

mean X. In this situation, we need to consider the second moment, population second moment is 4θ2

12 = θ2

3 and

sample second moment is
∑

i X
2
i

n , so θ̂ =
√

3
n

∑n
i=1 X

2
i . As we can see, even if the moments exist, there would be

problems matching population and sample moments.

On the other hand, the property of moment estimators can be very bad. As we can see, the estimator above for

U(−θ, θ) is not unbiased and it enjoys no asymptotic properties.

Maximum Likelihood Estimator

MLE applies for much more general case than the moment estimator since it deals with likelihood which always

exists. It picks the estimator that maximizes the joint likelihood.

For example, for X1, ..., Xn ∼ P (λ), we have

L(λ) = λ
∑

i xie−nλ (170)

so l(λ) =
∑

i xi log λ− nλ, taking derivative gives l′(λ) =
∑

i xi

λ − n, so λ̂ = X gives the MLE.

For example, for X1, ..., Xn ∼ U(−θ, θ), we have

L(θ) =
1

(2θ)n
Imin{x1,...,xn}>−θ,max{x1,...,xn}<θ (171)

so l(θ) = −n log(2θ),max {x1, ..., xn} < θ,−min {x1, ..., xn} < θ, since the log-likelihood is monotone decreasing in

θ, to make it larger, θ has to be as small as possible. Notice the range of θ and it’s natural that

θ̂ = max {max {x1, ..., xn} ,−min {x1, ..., xn}} (172)

the direct interpretation is that the MLE of θ is the smallest positive θ such that ∀i, |xi| < θ shall always be true.

Notice some properties of MLE that the MLE of the function of parameter is always the function of the MLE

of the parameters and that MLE enjoys asymptotic normality for large sample size.
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Week 8

Rao-Blackwell Theorem

We know that for any unbiased estimator θ̂ and a sufficient statistic U for θ, θ̃ = E(θ̂|U) is always still an

unbiased estimator and V ar(θ̃) ≤ V ar(θ̂) it’s at least as effective as the original estimator. Note that sufficiency of U

is to make sure that θ̃ has nothing to do with θ since the estimator can never contain the true unknown parameter.

This provides a way to find MVUE of the parameter. However, we won’t start from any estimator but would

rather start from a function of the sufficient statistic. The first step is always to find the sufficient statistic U and

find a function h(U) such that Eh(U) = θ, if such h(U) is also complete, by Lehmann-Scheffe theorem, such h(U)

must be MVUE. (we have not introduced the concept of completeness but here the point is that we shall find the

minimal possible sufficient statistic, although minimal sufficient statistic is still not necessarily complete, we ignore

the additional details)

Let’s look at example: Y1, ..., Yn follows exponential distribution with mean θ and estimating h(θ) = e−
t
θ is of

our interest. Let’s first build the MLE for such quantity. By equivariance property, we just need to find MLE for θ:

f(y; θ) = θ−ne−
1
θ

∑
i yi (173)

l(θ) = −n log θ −
∑

i xi

θ
(174)

so θ̂MLE = X. And ˆh(θ) = e−
t
Y is the MLE. However, this is a biased estimator and we have to work out from the

beginning if we want to find MVUE for h(θ).

Notice that V = IY1>t is unbiased estimator for h(θ) since

EV = P (Y1 > t) = h(θ) (175)

now let’s look for another minimal sufficient statistic for θ to apply the Rao-Blackwell theorem. Calculate the

likelihood ratio

f(x; θ)

f(y; θ)
= e−

1
θ (

∑
i xi−

∑
i yi) (176)

so U =
∑

i Yi is the minimal sufficient statistic for θ (actually also complete).

Let’s compute E(V |U) and this requires us to compute the conditional density of Y1|U :

fY1|U (y|u) =
fY1,U (y, u)

fU (u)
(177)

note that U ∼ Γ(n, 1
θ ) so the marginal of U is clear and we just have to figure out the joint density. There is a trick

here to notice

fY1,U (y, u) = fY1(y) · fU |Y1
(u|y) (178)
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and FU |Y1
(u|y) = P (Y2 + ...+ Yn ≤ u− y|Y1 = y) = P (Y2 + ...+ Yn ≤ u− y) with Y2 + ...+ Yn ∼ Γ(n− 1, 1

θ ) so

FU |Y1
(u|y) =

∫ u−y

0

θ1−n

Γ(n− 1)
tn−2e−

t
θ dt (179)

fU |Y1
(u|y) = θ1−n

Γ(n− 1)
(u− y)n−2e−

u−y
θ (0 < y < u) (180)

and

fY1,U (y, u) = θ−1e−
y
θ · θ1−n

Γ(n− 1)
(u− y)n−2e−

u−y
θ (181)

=
θ−n

Γ(n− 1)
(u− y)n−2e−

u
θ (0 < y < u) (182)

so

fY1|U (y|u) =
fY1,U (y, u)

fU (u)
(183)

=

θ−n

Γ(n−1) (u− y)n−2e−
u
θ

θ−n

Γ(n)u
n−1e−

u
θ

(184)

= (n− 1)(u− y)n−2u1−n (0 < y < u) (185)

and let’s compute the conditional expectation

E(V |U = u) = P (Y1 > t|U = u) (186)

=

∫ u

t

(n− 1)(u− y)n−2u1−n dy (187)

= u1−n(u− t)n−1 (188)

and E(V |U) =
(
1− t

U

)n−1
. This is just the MVUE of h(θ).

Confidence Interval

The pivotal method: find a pivotal quantity P as a function of sample and parameter θ whose distribution does

not depend on θ (is ancillary). Find an interval (a, b) such that P (P ∈ (a, b)) = 1−α and this will give the confidence

interval of θ with θ having 1− α probability of taking values in such interval.

The problem is how to construct an ancillary statistic, and we always refer to the location family and the

scale family for help. For example, if X1, ..., Xn comes from exponential distribution with mean θ, Yi =
Xi

θ follows

exponential distribution with mean 1 and as a result, statistics like

X1∑n
i=1 Xi

,
X2

1∑n
i=1 X

2
i

(189)

28



PSTAT 120B recitation notes written by Haosheng Zhou

will all be ancillary. If X1, ..., Xn ∼ N(θ, 1), then Yi = Xi − θ ∼ N(0, 1) so statistics like

X,S2 (190)

will all be ancillary.

Example: Y ∼ N(0, σ2) and Y 2

σ2 ∼ χ2(1) and we want to view P = Y 2

σ2 as a pivotal quantity since it only contains

sample and unknown parameter σ and is ancillary. We just need to find (a, b) such that P (a < P < b) = 0.95 (check

the chi-square CDF chart) and P
(
a < Y 2

σ2 < b
)
= 0.95 so

(
Y√
b
, Y√

a

)
is the 95% CI for σ.

Example: Y1, ..., Yn ∼ U(0, θ) then U = 1
θY(n) is ancillary so it’s a pivotal quantity and one can use this to build

the CI for θ.
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Week 9

Small-Sample Confidence Interval

The pivotal quantity method we have introduced last week is a way to find small-sample confidence interval for

the parameter. The point when we have small-sample is that we cannot use any large-sample approximations and

asymptotic results. Instead, we have to focus on the exact distribution of the pivotal statistic we are able to find.

Large-Sample Confidence Interval

In large sample case, we have tools like CLT and the asymptotic normality of MLE to help us build CI.

For all questions that hope to build CI for the population mean, CLT always works and provides us with a

Gaussian CI.

On the other hand, for MLE estimates, we do need an extra condition that θ̂ is a consistent estimator of θ to

construct the CI. Under such condition, we would see that

√
n(θ̂ − θ)√

1
I(θ̂)

d→ N(0, 1) (n → ∞) (191)

for the case where X1, ..., Xn ∼ B(1, θ), the Fisher information is I(θ) = 1
θ(1−θ) so

(θ̂ − θ)√
θ̂(1−θ̂)

n

d→ N(0, 1) (n → ∞) (192)

and 95% CI of θ is given by

[
θ̂ − 1.96

√
θ̂(1−θ̂)

n , θ̂ + 1.96

√
θ̂(1−θ̂)

n

]
.
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