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The following contents about HJE & HJBE refers to the Evans book.

Hamilton-Jacobi Equation (HJE)

The Hamilton-Jacobi equation is a non-linear first-order PDE with the formut +H(Du) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}
(1)

where u = u(x, t) : Rn × [0,∞) → R is the function to solve out and Du = (ux1 , ..., uxn) is the gradient of u w.r.t.

space variable x. Here the Hamiltonian H : Rn → R is given and the initial condition g : Rn → R is given.

Connection with Hamilton’s Equations

Let’s first apply the method of characteristics to get some intuition by noticing that this equation is a first-order

equation. We know that the method of characteristics does not necessarily hold in general (since it requires the

existence of C2 solution), but this may tell us how to proceed. In this section, we assume that HJE looks likeut +H(Du, x) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}
(2)

where the Hamiltonian also depends on x.

Notice that here we merge the time variable t with the space variable x and denote it as x ∈ Rn+1,

where x1, ..., xn are components of x and xn+1 denotes the time. Define

z(s) = u(x(s)) (3)

as the version of u along the characteristic curve and

p(s) = Du(x(s)) ∈ Rn+1 (4)

as the version ofDu along the characteristic curve, note that here p1, ..., pn are partial derivatives w.r.t. x-components

and pn+1 is the partial derivative w.r.t. t. One would always set the characteristic direction to be

x′(s) = DpF (5)

where the original PDE can be written as F (Du, u, x) = 0 and in this case

F (p, z, y) = pn+1 +H(p1, ..., pn, x1, ..., xn) (6)
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As a result, one get the ODE system from the method of characteristics[xi(s)]′ = Hpi
(p1, ..., pn, x1, ..., xn) (i = 1, 2, ..., n)

[xn+1(s)]′ = 1
(7)

so one can identify xn+1(s) as s, meaning that the parameter s is the same as the time variable t = xn+1. The

equation for z(s) is z′(s) = DpF · p(s), so

z′(s) =

n∑
i=1

Hpi
(p1, ..., pn, x1, ..., xn) · pi(s) + pn+1(s) (8)

=

n∑
i=1

Hpi(p
1, ..., pn, x1, ..., xn) · pi(s)−H(p1, ..., pn, x1, ..., xn) (9)

The equation for p(s) is p′(s) = −DxF −DzF · p(s), so[pi(s)]′ = −Hxi
(p1, ..., pn, x1, ..., xn) (i = 1, 2, ..., n)

[pn+1(s)]′ = 0
(10)

with the last equation [pn+1(s)]′ = 0 as the redundant one since xn+1 has already been parameterized as s.

By cancelling all redundant equations and reorganizing the variables, we get the characteristic ODE system

for HJE 
x′(s) = DpH(p(s), x(s))

z′(s) = DpH(p(s), x(s)) · p(s)−H(p(s), x(s))

p′(s) = −DxH(p(s), x(s))

(11)

where p(s) = (p1(s), ..., pn(s)) and x(s) = (x1(s), ..., xn(s)) (the last component in x(s), p(s) is ignored). The

Hamilton’s equation is defined as the system consisting of the first and third equation, i.e.x′(s) = DpH(p(s), x(s))

p′(s) = −DxH(p(s), x(s))
(12)

Remark. The reason that we only take the equations w.r.t x(s) and p(s) in the Hamilton’s equations is that those

two equations have nothing to do with z, they already have 2n unknowns and 2n equations. In other words, the

equation w.r.t. z(s) does not provide any effective information for the derivation of x(s), p(s), and after solving out

x(s), p(s), one can immediately know z(s).
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A Problem in the Calculus of Variation

The connection between HJE and Hamilton’s equations can also be shown in another perspective by considering

a problem in the calculus of variation. The problem is formed as finding a best curve in an admissible class. The

admissible class is defined as

A =
{
w ∈ C2, w : [0, t] → Rn : w(0) = y, w(t) = x

}
(13)

so any admissible curve is a C2 path in Rn such that it starts from point y and ends at point x with x, y ∈ Rn, t > 0

given. Imagine w(s) ∈ A as the moving trajectory of a particle, then w′(s) is actually the speed of the particle at

each time. The action functional is then defined as

I[w] =

∫ t

0

L(w′(s), w(s)) ds (14)

where L : Rn × Rn → R is a given smooth function called Lagrangian and we hope to find a curve x(s) ∈ A such

that the action functional is minimized

I[x] = inf
w(s)∈A

I[w] (15)

Remark. The Lagrangian has the meaning as the kinetic energy minus the potential energy in physics which has the

meaning of ”increments of distance”. Here among all possible and smooth enough curves between two fixed points,

we want to find x(s) such that it minimizes the integral of the Lagrangian along the path, equivalent to saying that

the optimal path is the one that takes the ”shortest” path. If one still finds it hard to understand, think about how

light travels, it always travels in the path such that the distance it goes through is the shortest, a natural minimization

of a ”trivial” action functional.

Let’s assume that the Lagrangian is given by L = L(v, x) (v, x ∈ Rn) for the convenience of notations and that

the inf of I[w] can be achieved by some x(s) ∈ A as the optimal path. To build up a PDE for x(s), choose

smooth y : [0, t] → Rn with y(s) = (y1(s), ..., yn(s)) such that y(0) = y(t) = 0 and consider perturbing the optimal

path x(s) by a small multiple of y(s) to get

w(s) = x(s) + τy(s) (τ ∈ R) (16)

since w(s) ∈ A , one immediately sees that

I[w] ≥ I[x] (17)

Consider the action functional of the perturbed path

i : R → R, i(τ) = I[x+ τy] (18)
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it’s easy to see that it has minimum at τ = 0 (assume it’s differentiable) with

i′(τ) =
d

dτ

∫ t

0

L(x′(s) + τy′(s), x(s) + τy(s)) ds (19)

=

∫ t

0

y′(s) · Lv(x
′(s) + τy′(s), x(s) + τy(s)) + y(s) · Lx(x

′(s) + τy′(s), x(s) + τy(s)) ds (20)

so

i′(0) =

∫ t

0

y′(s) · Lv(x
′(s), x(s)) + y(s) · Lx(x

′(s), x(s)) ds (21)

=

∫ t

0

n∑
i=1

(
[yi(s)]′ · Lvi(x

′(s), x(s)) + yi(s) · Lxi
(x′(s), x(s))

)
ds (22)

= 0 (23)

Do transformations to this integral to find

n∑
i=1

∫ t

0

(
[yi(s)]′ · Lvi(x

′(s), x(s)) + yi(s) · Lxi
(x′(s), x(s))

)
ds (24)

=

n∑
i=1

∫ t

0

Lvi(x
′(s), x(s)) dyi(s) +

∫ t

0

Lxi
(x′(s), x(s)) · yi(s) ds (25)

=

n∑
i=1

−
∫ t

0

yi(s) dLvi(x
′(s), x(s)) +

∫ t

0

Lxi
(x′(s), x(s)) · yi(s) ds (26)

=

n∑
i=1

∫ t

0

[
− d

ds
Lvi(x

′(s), x(s)) + Lxi
(x′(s), x(s))

]
yi(s) ds (27)

= 0 (28)

which is valid for any smooth y such that y(0) = y(t) = 0. By density argument,

∀i = 1, 2, ..., n, ∀s ∈ [0, t],− d

ds
Lvi(x

′(s), x(s)) + Lxi(x
′(s), x(s)) = 0 (29)

Theorem 1. (Euler-Lagrange Equation) If path x(s) is the optimal path and solves the variational problem

mentioned above, then it must satisfy Euler-Lagrange equation that

∀s ∈ [0, t],− d

ds
DvL(x

′(s), x(s)) +DxL(x
′(s), x(s)) = 0 (30)

Remark. The Euler-Lagrange equation consists of n second-order ODEs. Note that when x(s) is the solution to

the Euler-Lagrange equation, it does not necessarily achieve the inf of the action functional in the variational problem

so the converse of this theorem is not true.
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In order to link Euler-Lagrange equation back to Hamilton’s equations, let’s first define

p(s) = DvL(x
′(s), x(s)) (31)

as the generalized momentum for position x(s) and velocity x′(s) (we will see why this has something to do

with momentum later). We have to assume that given x, p ∈ Rn the equation p = DvL(v, x) can be uniquely

solved for v as a smooth function of p and x as v(p, x). The Hamiltonian H associated with Lagrangian

L is defined as

H(p, x) = p · v(p, x)− L(v(p, x), x) (p, x ∈ Rn) (32)

for v(p, x) satisfying p = DvL(v, x) for given x, p defined implicitly.

Remark. To understand the motivation of those definitions, let’s consider the classical setting in physics that

L(v, x) =
1

2
m||v||22 − ϕ(x) (33)

where 1
2m||v||22 is the kinetic energy and ϕ is the potential energy with the mass m > 0. The Lagrangian immediately

tells us that the Euler-Lagrange equation is

− d

ds
mx′(s)−Dϕ(x(s)) = 0 (34)

m · x′′(s) = −Dϕ(x(s)) (35)

where Dϕ is the force field generated by ϕ and this is Newton’s second law for the acceleration of a particle with

mass m in such force field.

Let’s then try to calculate the generated momentum

p(s) = m · x′(s) (36)

which is consistent with the true momentum in this case. The implicit definition of v is then

p(s) = DvL(v(s), x(s)) (37)

m · x′(s) = m · v(s) (38)

since it can be uniquely solved for v as a smooth function, it must be true that v(p, x) = x′(s), just the velocity of the

particle. As a result, the Hamiltonian for such Lagrangian is

H(p, x) = m · v · v − L(v, x) (39)

=
1

2
m||v||22 + ϕ(x) (40)

7
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so the Hamiltonian is the total energy as the sum of kinetic and potential energy.

Remark. Another understanding of the definition of Hamiltonian is to specify p as the dual variable and L as the

running cost in the minimization problem. Although it’s currently not obvious where those names come from, this

understanding is the closest to the stochastic control problem and the Pontryagin maximum principle we will discuss

in a later context.

Theorem 2. (Connection with Hamilton’s Equation) Let x(s) be the optimal solution to the variational problem

and p(s) be its generalized momentum defined as p(s) = DvL(x
′(s), x(s)) above, then those two quantities satisfy

Hamilton’s equations x′(s) = DpH(p(s), x(s))

p′(s) = −DxH(p(s), x(s))
(41)

for s ∈ [0, t] and the mapping

s→ H(p(s), x(s)) (42)

is constant.

Proof. Here is where the assumption that p = DvL(v, x) has unique smooth solution v = v(p, x) comes in. By such

assumption, we conclude that v(p(s), x(s)) = x′(s).

After noticing this fact, we are left with pure calculations for DpH,DxH. By definition, H(p, x) = p · v(p, x)−
L(v(p, x), x), so

Hpi(p, x) =

n∑
j=1,j ̸=i

pj · vjpi
(p, x) + vi(p, x) + pi · vipi

(p, x)−DvL(v(p, x), x) ·Dpiv(p, x) (43)

=

n∑
j=1

[pj · vjpi
(p, x)− Lvj (v(p, x), x) · vjpi

(p, x)] + vi(p, x) (44)

=

n∑
j=1

[pj − Lvj (v(p, x), x)] · vjpi
(p, x) + vi(p, x) (45)

= vi(p, x) (46)

since p = DvL(v, x) by the definition of v. As a result,

Hpi(p(s), x(s)) = vi(p(s), x(s)) = [xi(s)]
′ (47)

proved how the first n equations come.

8
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For the next n equations, the calculation is similar

Hxi(p, x) =

n∑
j=1

pjv
j
xi
(p, x)−DvL(v(p, x), x) ·Dxiv(p, x)−DxL(v(p, x), x) (48)

=

n∑
j=1

[pjv
j
xi
(p, x)− pj · vjxi

(p, x)]−DxL(v(p, x), x) (49)

= −DxL(v(p, x), x) (50)

by applying the definition of v once more. As a result,

Hxi
(p(s), x(s)) = −DxL(v(p(s), x(s)), x(s)) = −DxL(x

′(s), x(s)) (51)

proves the Hamilton’s equations.

Moreover,

d

ds
H(p(s), x(s)) = DpH(p(s), x(s)) · p′(s) +DxH(p(s), x(s)) · x′(s) (52)

= x′(s) · p′(s)− p′(s) · x′(s) (53)

= 0 (54)

and this is telling us that the Hamiltonian is invariant w.r.t. time.

Remark. To briefly conclude what we have talked about in this section, we start from introducing Lagrangian as the

”running loss function” of the variational problem and hope to find the optimal path x(s) minimizing the loss. Such

optimal path shall then satisfy the Euler-Lagrange equation consisting of n second-order ODEs.

From the Euler-Lagrange equations, one can further introduce the generalized momentum p(s) and the velocity

v(p, x) as the unique smooth solution to p = DvL(v, x) (such v(s) = x′(s) is the unique velocity such that the

generalized momentum is the given p). The Hamiltonian is defined and the optimal path x(s) and the generalized

momentum p(s) must satisfy the Hamilton’s equation. Moreover, the Hamiltonian won’t change as time goes

by on the optimal path.

As a result, we have interpreted the meaning of the Hamilton equations derived from the method of characteristics.

9
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Legendre Transform & Frenchel Conjugate

Now let’s turn back to HJE ut +H(Du) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}
(55)

with the dependence on x of Hamiltonian H cancelled. Now the Lagrangian L(v) only depends on v. Let’s

assume that the Lagrangian is a convex function with lim||v||→∞
L(v)
||v|| = +∞ so of course it’s continuous.

The Legendre transform provides the Frenchel conjugate of the Lagrangian as

L∗(p) = sup
v∈Rn

{p · v − L(v)} (56)

The motivation of considering Frenchel conjugate comes from the fact that in previous discussions the Hamil-

tonian is defined as H(p, x) = p · v(p, x) − L(v(p, x), x), a form very similar to the conjugate of Lagrangian. To

figure out the relationship between Hamiltonian and Lagrangian, notice that under the assumptions for Lagrangian,

p · v − L(v) is concave and continuous in v. For each fixed p ∈ Rn,

p · v − L(v)

||v||
= p · v

||v||
− L(v)

||v||
→ −∞ (||v|| → ∞) (57)

so there must exist v∗ ∈ Rn such that the sup can be attained, i.e. L∗(p) = p · v∗ − L(v∗). Note that if L is

differentiable at v∗, then

p−DL(v∗) = 0 (58)

since v∗ achieves the sup. This gives us the equation p = DL(v∗) which is just the definition equation for velocity

v(p) in the context above. As a result, v(p) = v∗ is the solution (although no uniqueness ensured). Replacing v∗

with the velocity v(p) one can see

p · v(p)− L(v(p)) = L∗(p) (59)

and the LHS is an analogue to the definition of the Hamiltonian at p! Heuristically, this gives rise to the convex

duality construction of Lagrangian and Hamiltonian.

Theorem 3. (Convex Duality of Lagrangian and Hamiltonian) Assume that Lagrangian L = L(v) is convex

and lim||v||→∞
L(v)
||v|| = +∞ and define Hamiltonian H = L∗, then H is still convex, lim||p||→∞

H(p)
||p|| = +∞ and

L = H∗.

10
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In particular, when H is differentiable at p and L is differentiable at v, then the followings are equivalent:
p · v = L(v) +H(p)

p = DL(v)

v = DH(p)

(60)

Proof. Note that H = L∗ so H∗ = L∗∗. Note that since L is a convex and closed function, its Frenchel conjugate

must be itself (since double Frenchel conjugate gives the convex envelope), so H∗ = L is still convex and closed.

Notice that H(p) = supv∈Rn {p · v − L(v)}, so

∀λ > 0, H(p) ≥ p · λ p

||p||
− L

(
λ
p

||p||

)
(61)

≥ λ||p|| − sup
B(0,λ)

L (62)

it’s then obvious that lim||p||→∞
H(p)
||p|| ≥ λ, so lim||p||→∞

H(p)
||p|| = +∞.

When H is differentiable at p and L is differentiable at v, note that if p · v = L(v) +H(p) then v is achieving

the sup in H(p) = supv∈Rn {p · v − L(v)} so

p−DL(v) = 0 (63)

and p is achieving the sup in L(v) = supp∈Rn {p · v −H(p)} so

v −DH(p) = 0 (64)

Conversely, if p = DL(v), then it’s true that H(p) = p · v − L(v) so it’s proved.

Remark. Consider the previous example that

L(v) =
1

2
m||v||2 (65)

then H(p) = supv∈Rn

{
p · v − 1

2m||v||2
}
and the sup is achieved at v∗ = 1

mp

H(p) =
1

2m
||p||2 (66)

if p = DL(v) = mv, then the Hamiltonian is actually

H(p) =
1

2
m||v||2 (67)

which is equal to the Lagrangian when there’s no potential and H(p) + L(v) = p · v.

Remark. Let’s compute some more examples to illustrate the connection between Lagrangian and Hamiltonian.

11
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Consider H(p) = 1
r ||p||

r (1 < r <∞), so

L(v) = sup
p∈Rn

{p · v −H(p)} (68)

and the sup is achieved when v = p · ||p||r−2, so v is parallel to p with p = kv (k > 0). Plug in to find

L(v) = sup
k>0

{
k||v||2 − kr

r
||v||r

}
(69)

and take another derivative w.r.t. k to find that the sup is achieved when k = ||v||
2−r
r−1 , so

L(v) =
r − 1

r
||v||

r
r−1 (70)

=
1

s
||v||s (71)

where 1
s + 1

r = 1, so s is the Holder conjugate of r.

Consider H(p) = 1
2p

TAp+ b · p, where A is symmetric, positive definite and b ∈ Rn, then

L(v) = sup
p∈Rn

{p · v −H(p)} (72)

and the sup is achieved when p = A−1(v − b), so

L(v) =
1

2
(v − b)TA−1(v − b) (73)

Remark. For convex function, one can define the subdifferential of H at p so that the Frenchel inequality holds

H(p) + L(v) ≥ p · v (74)

and the equality holds if and only if v ∈ ∂H(p) if and only if p ∈ ∂L(v), a generalization of the conclusion in the

theorem above.

Hopf-Lax Formula

We still consider the HJE with Hamiltonian H not depend on x but only depends on Du. The characteristic

ODEs then become 
p′(s) = 0

z′(s) = DH(p(s)) · p(s)−H(p(s))

x′(s) = DH(p(s))

(75)

12
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with the equation for p′(s), x′(s) being Hamilton’s equations. Note that since x′(s) = DH(p(s)), by the theorem

we have proved above, L(x′(s)) + H(p(s)) = p · x′(s). So the equation of z′(s) is describing the fact that

z′(s) = L(x′(s)). From the method of characteristics,

z(t) = u(x(t), t) =

∫ t

0

L(x′(s)) ds+ g(x(0)) (76)

since z(0) = u(x(0), 0) = g(x(0)) by the initial value condition, providing us an ansatz of the solution. However, this

construction of the solution u(x, t) assumes the smoothness of the solution, which is often not the case for HJE. To

think about modifying the construction of the solution such that it also works for non-smooth solution u(x, t), we

notice that ∫ t

0

L(x′(s)) ds (77)

is the ”running loss function” of the variational problem we have mentioned above and x(s) is the optimal path

found in that problem. As a result, we can think about defining

u(x, t)
def
= inf

w

{∫ t

0

L(w′(s)) ds+ g(w(0)) : w : [0, t] → Rn, w ∈ C1, w(t) = x

}
(78)

as the optimal ”loss” determined by the Lagrangian among all paths that hits x at time t. To see how

this works as the solution to the HJE, refer to the following theorem. We assume that H is smooth and convex

with lim||p||→∞
H(p)
||p|| = +∞ and g : Rn → R is Lipschitz in the following context.

Theorem 4. (Hopf-Lax Formula) For fixed x ∈ Rn, t > 0,

u(x, t) = inf
w

{∫ t

0

L(w′(s)) ds+ g(w(0)) : w : [0, t] → Rn, w ∈ C1, w(t) = x

}
(79)

= inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(80)

Proof. Consider ∀y ∈ Rn and the path w(s) = y + s
t (x − y) so w(t) = x (constructed based on x−y

t inside the

Lagrangian), it’s obvious that

u(x, t) ≤
∫ t

0

L

(
x− y

t

)
ds+ g(y) (81)

so by taking inf w.r.t. y on both sides

u(x, t) ≤ inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(82)

13
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Conversely, for any C1 path w such that w(t) = x, take y = w(0)

tL

(
x− y

t

)
+ g(y) = tL

(
x− w(0)

t

)
+ g(w(0)) (83)

= tL

(
1

t

∫ t

0

w(s) ds

)
+ g(w(0)) (84)

≤
∫ t

0

L(w′(s)) ds+ g(w(0)) (85)

because of Jensen’s inequality applied for 1
t

∫ t

0
f(s) ds, the integral average of f on [0, t]

1

t

∫ t

0

L (w′(s)) ds ≥ L

(
1

t

∫ t

0

w′(s) ds

)
(86)

by taking inf w.r.t. all paths w on both sides, one can conclude that

u(x, t) ≥ inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(87)

so the theorem is proved.

Remark. The shifting from the ansatz u(x(t), t) =
∫ t

0
L(x′(s)) ds + g(x(0)) to Hopf-Lax formula is critical! The

main thought comes from the variational problem viewing x(s) as the optimal path and the integral of Lagrangian as

running loss.

Actually, from another perspective, one may be able to see the spirit of stochastic control out of the Hopf-Lax

formula. Notice that w can be view as a stochastic process instead of a deterministic function, and the
∫ t

0
L(w′(s)) ds

can be viewed as a running loss with g(w(0)) as terminal loss (conditional on the filtration Ft, i.e. all information

available until time t, that’s why the domain of w is [0, t]. Then u(x, t) is essentially a value function conditioning

on w(t) = x, i.e. the process passes through x at time t. In such sense, HJE is actually characterizing the

value function of a stochastic control problem in a deterministic way!

Remark. In Hopf-Lax formula, the inf can always be attained. Note that f(y) = tL
(
x−y
t

)
+ g(y) is

continuous in y and

f(y)

||y||
=
L
(
x−y
t

)
||y||
t

+
g(y)

||y||
(88)

with L = H∗ so lim||v||→∞
L(v)
||v|| = +∞ and since g is Lipschitz, g(y)

||y|| ≤
g(0)+Lips(g)||y||

||y|| ≤ Lips(g)+ ε for large enough

||y||. As a result,

f(y)

||y||
→ +∞ (||y|| → ∞) (89)

combining with continuity, we see that the minimum of f(y) must be attained by some y ∈ Rn.

14
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Hopf-Lax Formula as Solution to HJE

Now let’s argue that the heuristic definition of such u(x, t) by the Hopf-Lax formula is actually a solution to

HJE. In order to prove this, let’s first consider some useful propositions.

Theorem 5. (Flow Property) For each x ∈ Rn and s ∈ [0, t],

u(x, t) = inf
y∈Rn

{
(t− s)L

(
x− y

t− s

)
+ u(y, s)

}
(90)

Proof. Let’s start by noticing that for ∀y ∈ Rn, s ∈ [0, t], there always exists z ∈ Rn such that the inf in Hopf-Lax

formula is attained, i.e.

u(y, s) = sL

(
y − z

s

)
+ g(z) (91)

in order to connect it with x−y
t−s , consider the convex representation and apply the convexity of L that

t− s

t

x− y

t− s
+
s

t

y − z

s
=
x− z

t
(92)

t− s

t
L

(
x− y

t− s

)
+
s

t
L

(
y − z

s

)
≥ L

(
x− z

t

)
(93)

so that

(t− s)L

(
x− y

t− s

)
+ u(y, s) = (t− s)L

(
x− y

t− s

)
+ sL

(
y − z

s

)
+ g(z) ≥ tL

(
x− z

t

)
+ g(z) (94)

take inf w.r.t. y on both sides, one would see that

inf
y∈Rn

{
(t− s)L

(
x− y

t− s

)
+ u(y, s)

}
≥ tL

(
x− z

t

)
+ g(z) ≥ u(x, t) (95)

On the other hand, let’s try to find y ∈ Rn such that (t − s)L
(

x−y
t−s

)
+ u(y, s) ≤ u(x, t). Apply the Hopf-Lax

formula again to find w ∈ Rn such that u(x, t) = tL
(
x−w
t

)
+ g(w). Consider applying the convexity of L again, to

set

y =
s

t
x+

t− s

t
w (96)

x− y

t− s
=
x− w

t
(97)

and apply Hopf-Lax formula for u(y, s) once more to find

(t− s)L

(
x− y

t− s

)
+ u(y, s) ≤ (t− s)L

(
x− w

t

)
+ u(y, s) ≤ (t− s)L

(
x− w

t

)
+ sL

(
y − w

s

)
+ g(w) (98)
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note that y−w
s = x−w

t , so

(t− s)L

(
x− y

t− s

)
+ u(y, s) ≤ tL

(
x− w

t

)
+ g(w) = u(x, t) (99)

by taking inf w.r.t. y on both sides, we proved the conclusion.

Remark. Note that the inf in this theorem can always be attained. This requires proving the fact that

y → u(y, s) is continuous, which will be proved in a later context.

Remark. The reason why we are calling this property the flow property is that this is telling us that we can act as

if we are starting at time s < t with initial value u(y, s). Then the Hopf-Lax formula still holds for such problem

and will generate the same u as what we would derive with an initial value condition at time 0. This is actually very

similar to the flow property of diffusion process.

Under the assumption that g is Lipschitz, one would see that such u is also Lipschitz in Rn× [0,∞) and it agrees

with the initial value condition g, i.e. ∀x ∈ Rn, u(x, 0) = g(x).

Theorem 6. (Lipschitz Continuity) Such u is Lipschitz in Rn × [0,∞), and ∀x ∈ Rn, u(x, 0) = g(x).

Proof. First prove that u(x, t) is Lipschitz in x. By Hopf-Lax formula, there exists y ∈ Rn such that u(x, t) =

tL
(
x−y
t

)
+ g(y). As a result, for ∀x, x′ ∈ Rn,

u(x′, t)− u(x, t) = inf
z

{
tL

(
x′ − z

t

)
+ g(z)

}
− tL

(
x− y

t

)
− g(y) (100)

≤ tL

(
x′ − (x′ − x+ y)

t

)
+ g(x′ − x+ y)− tL

(
x− y

t

)
− g(y) (101)

= g(x′ − x+ y)− g(y) ≤ Lips(g) · ||x′ − x|| (102)

so

|u(x′, t)− u(x, t)| ≤ Lips(g) · ||x′ − x|| (103)

by interchanging x and x′.

Now let’s prove that u and g agree when t = 0. Note that by Hopf-Lax formula, u(x, t) ≤ tL(0)+g(x). Set t = 0

to find u(x, 0) ≤ g(x). For the other direction, we would need to use the conjugacy of Lagrangian and Hamiltonian.

u(x, t) = inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(104)

= g(x) + inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)− g(x)

}
(105)

≥ g(x)− t sup
y∈Rn

{
−L

(
x− y

t

)
+ Lips(g) · ||y − x||

t

}
(106)
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by setting z = x−y
t as a new variable, one can see the structure of this sup

u(x, t) ≥ g(x)− t sup
z∈Rn

{−L (z) + Lips(g) · ||z||} (107)

in order to connect this sup with the Frenchel conjugate of Lagrangian which is the Hamiltonian, we would like to

see the forms like w · z − L(z). That’s why we view Lips(g) · ||z|| as Lips(g) z
||z|| · z with w = Lips(g) z

||z||

u(x, t) ≥ g(x)− t sup
w∈B(0,Lips(g))

sup
z∈Rn

{−L (z) + w · z} (108)

= g(x)− t sup
w∈B(0,Lips(g))

H(w) (109)

and since H is continuous and convex, supw∈B(0,Lips(g))H(w) <∞, setting t = 0 to see

u(x, 0) ≥ g(x) (110)

and we conclude that such u is equal to g when t = 0.

At last, prove that u(x, t) is Lipschitz in t. For ∀0 < t < t′, by the flow property,

u(x, t′)− u(x, t) = inf
y∈Rn

{
(t′ − t)L

(
x− y

t′ − t

)
+ u(y, t)

}
− u(x, t) (111)

≤ (t′ − t)L (0) + u(x, t)− u(x, t) (112)

= (t′ − t) · L (0) (113)

on the other hand, let’s apply the trick above one more time

u(x, t′) = u(x, t) + inf
y∈Rn

{
(t′ − t)L

(
x− y

t′ − t

)
+ u(y, t)− u(x, t)

}
(114)

≥ u(x, t) + (t′ − t) inf
y∈Rn

{
L

(
x− y

t′ − t

)
− Lips(u) · ||y − x||

t′ − t

}
(115)

consider z = y−x
t′−t and transform Lips(u) · ||y−x||

t′−t into the inner product form to see

u(x, t′)− u(x, t) ≥ −(t′ − t) sup
z∈Rn

{−L (z) + Lips(u) · ||z||} (116)

= −(t′ − t) sup
w∈B(0,Lips(u))

sup
z∈Rn

{−L (z) + w · z} (117)

= −(t′ − t) sup
w∈B(0,Lips(u))

H(w) (118)
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in all, we see that

|u(x, t′)− u(x, t)| ≤ C · |t′ − t|, C = max

{
|L(0)|, sup

w∈B(0,Lips(u))

|H(w)|

}
(119)

and such constant C has no dependence on x and t, that’s why u is also Lipschitz w.r.t. time t.

Theorem 7. (Hopf-Lax Formula as Solution to HJE) For u defined by the Hopf-Lax formula, if it’s differen-

tiable at a point (x, t), then ut(x, t) +H(Du(x, t)) = 0. In particular, such u is differentiable almost everywhere and

it’s the solution to HJE in the almost everywhere sense.

Proof. By Rademacher’s theorem, Lipschitz function on an open subset of Rn is almost everywhere differentiable.

So we only have to prove that HJE holds whenever u is differentiable at (x, t).

let’s first calculate the directional derivative of u along any vector v. By flow property,

u(x+ hv, t+ h) = inf
y∈Rn

{
hL

(
x+ hv − y

h

)
+ u(y, t)

}
(120)

≤ hL(v) + u(x, t) (121)

as a result,

∀v ∈ Rn, v ·Du(x, t) + ut(x, t) = lim
h→0+

u(x+ hv, t+ h)− u(x, t)

h
≤ L(v) (122)

note that the Hamiltonian is the Frenchel conjugate of Lagrangian, so

ut(x, t) +H(Du(x, t)) = ut(x, t) + sup
v∈Rn

{v ·Du(x, t)− L(v)} ≤ 0 (123)

To prove the other side, we have to choose v in the sup carefully. By Hopf-Lax formula, there exists z ∈ Rn

such that u(x, t) = tL
(
x−z
t

)
+ g(z). Take v = x−z

t in the sup to find

ut(x, t) +H(Du(x, t)) ≥ ut(x, t) +
x− z

t
·Du(x, t)− L

(
x− z

t

)
(124)

again we have to use finite difference to approximate the partial derivatives

u(x, t)− u

(
t− h

t
x+

h

t
z, t− h

)
= tL

(
x− z

t

)
+ g(z)− u

(
t− h

t
x+

h

t
z, t− h

)
(125)

≥ tL

(
x− z

t

)
+ g(z)− (t− h)L

(
x− z

t

)
− g(z) (126)

= hL

(
x− z

t

)
(127)
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setting h→ 0+ to know

ut(x, t) +
x− z

t
·Du(x, t) ≥ L

(
x− z

t

)
(128)

Finally, we have proved that

ut(x, t) +H(Du(x, t)) = 0 (129)

The theorem above ends our discussion on the solution to a particular kind of HJE (Hamiltonian only

depends on Du and is convex with Lipschitz initial value condition). To see a direct example of the

application of Hopf-Lax formula, consider the following PDEut + ||Du||2 = 0 in Rn × (0,∞)

u = +∞ · IEc on Rn × {0}
(130)

with E as a closed subset in Rn. Now the Hamiltonian is H(p) = ||p||2 so Lagrangian is its Frenchel conjugate

L(v) = sup
p∈Rn

{p · v −H(p)} =
1

4
||v||2 (131)

Apply the Hopf-Lax formula to find

u(x, t) = inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(132)

= inf
y∈E

{
1

4t
||x− y||2

}
(133)

=
1

4t
dist2(x,E) (134)

the solution has something to do with the distance between x and E.
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Optimal Control Problem and Hamilton-Jacobi-Bellman Equation

In this section we state the deterministic optimal control problem and find the connection between optimal

control problem, HJE, Hamilton-Jacobi-Bellman equation (HJBE) and -Lax formula.

Problem Formulation

All control problems have a certain dynamics telling us how the system evolves. In optimal control problem,

the dynamics is given by an ODE x′(s) = f(x(s), α(s)) (s ∈ [t, T ])

x(t) = x
(135)

where the dynamics works in time interval [t, T ] with T fixed and an initial value condition given at time t. We will

be varying the time t and the initial value x shortly afterwards to get a PDE describing such an optimal control

problem. Note that x(s) denotes the state of the problem at time s while x denotes the initial value

condition. Viewing x′(s) as x(s+h)−x(s)
h for h → 0+, the ODE is describing how the change of state from time s

to time s + h happens given the current state x(s) and the current control α(s). (so it’s actually a Markovian

setting since x′(s) has nothing to do with {x(t)} |t<s given x(s).) The control can be understood as the ”action” in

discrete-time Markov decision process that changes the state evolution and has something to do with the rewards.

The control is nothing complicated but a set of parameters given at each time that will change the dynamics of

the system, eventually changing the state evolution of the system. Let’s denote A ⊂ Rm as some given compact set

consisting of all possible values the control at a given time α(s) can take. The admissible set

A = {α : [0, T ] → A : α(·) measurable} (136)

then denotes all possible controls across the whole time interval [0, T ] (since control may change over time, it maps

each time point to the value of control at that time point). It’s then clear that the function

f : Rn ×A→ Rn (137)

is mapping a m + n-dimensional vector to a n-dimensional vector. Let’s assume that f is a given bounded

Lipschitz function. This assumption is made to ensure that the ODE always has unique solution for every given

control α(·) ∈ A denoted x(·) = xα(·)(·). Our goal in optimal control problem is to find the optimal control

α∗(·) under some criteria.

In order to define the optimality, we introduce the cost functional that represents the cost one has to pay

selecting control α with initial value condition x(t) = x

Cx,t[α] =

∫ T

t

r(x(s), α(s)) ds+ g(x(T )) (138)
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here
∫ T

t
r(x(s), α(s)) ds is the running cost and g(x(T )) is the terminal cost where r : Rn × A → R, g : Rn → R are

assumed to be bounded and Lipschitz in variable x.

To sum up, given time t ∈ [0, T ] and the initial value condition x(t) = x, we want to find the optimal control

α∗ such that

Cx,t[α
∗] = inf

α∈A
Cx,t[α] (139)

Value Function

Let’s consider the value function u(x, t) as the least possible cost among all admissible control with initial

value condition x(t) = x (with dynamic programming approach), i.e.

u(x, t) = inf
α∈A

Cx,t[α] (140)

then we hope to find a PDE that characterizes such value function u.

Theorem 8. (Optimality Condition) For fixed x ∈ Rn, 0 ≤ t < T and h > 0 such that t+ h ≤ T ,

u(x, t) = inf
α∈A

{∫ t+h

t

r(x(s), α(s)) ds+ u(x(t+ h), t+ h)

}
(141)

where x(·) = xα(·)(·) is the solution to the ODE for fixed control α(·).

Proof. For any control α1 ∈ A , the ODE has solution x1(·). Now we want to prove that LHS is less than RHS, so

we have to argue that ∀ε > 0,

u(x, t) ≤
∫ t+h

t

r(x1(s), α1(s)) ds+ u(x1(t+ h), t+ h) + ε (142)

In order to achieve this goal, expand the inf in the definition of u(x, t) for time t+ h and initial value x1(t+ h)

to find that ∀ε > 0, there exists α2 ∈ A and the solution to the ODE for fixed control α2 which is x2(·) such that

u(x1(t+ h), t+ h) + ε ≥ Cx1(t+h),t+h[α2] =

∫ T

t+h

r(x2(s), α2(s)) ds+ g(x2(T )) (143)

so far, we have successfully figured out a lower bound for u(x1(t + h), t + h). To connect it with u(x, t) and any

control α1, we can construct a new control α3 that sticks to α1 before time t+ h but shifts to α2 after time t+ h.

α3(s) = α1(s) · It≤s≤t+h + α2(s) · It+h≤s≤T (144)

under our assumption, the original ODE has unique solution, and it’s easy to see that

x3(s) = x1(s) · It≤s≤t+h + x2(s) · It+h≤s≤T (145)

21



Stochastic Control notes written by Haosheng Zhou CONTENTS

is the solution to the ODE for fixed control α3 since

∀t ≤ s ≤ t+ h, x′3(s) = x′1(s) = f(x1(s), α1(s)) = f(x3(s), α3(s)) (146)

∀t+ h ≤ s ≤ T, x′3(s) = x′2(s) = f(x2(s), α2(s)) = f(x3(s), α3(s)) (147)

x3(t) = x1(t) = x (148)

now we can see that

u(x, t) ≤ Cx,t[α3] (149)

=

∫ T

t

r(x3(s), α3(s)) ds+ g(x3(T )) (150)

=

∫ t+h

t

r(x1(s), α1(s)) ds+

∫ T

t+h

r(x2(s), α2(s)) ds+ g(x2(T )) (151)

≤
∫ t+h

t

r(x1(s), α1(s)) ds+ u(x1(t+ h), t+ h) + ε (152)

so we have proved that

u(x, t) ≤ inf
α∈A

{∫ t+h

t

r(x(s), α(s)) ds+ u(x(t+ h), t+ h)

}
(153)

On the other hand, ∀ε > 0, there exists control α4 ∈ A such that

u(x, t) + ε ≥ Cx,t[α4] (154)

=

∫ T

t

r(x4(s), α4(s)) ds+ g(x4(T )) (155)

=

∫ t+h

t

r(x4(s), α4(s)) ds+

∫ T

t+h

r(x4(s), α4(s)) ds+ g(x4(T )) (156)

by the inf in the definition of value function. However, by applying again the inf for u(x4(t+ h), t+ h)

u(x4(t+ h), t+ h) ≤ Cx4(t+h),t+h[α4] (157)

=

∫ T

t+h

r(x4(s), α4(s)) ds+ g(x4(T )) (158)

so we have proved that

u(x, t) + ε ≥
∫ t+h

t

r(x4(s), α4(s)) ds+ u(x4(t+ h), t+ h) (159)
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and we will find

u(x, t) ≥ inf
α∈A

{∫ t+h

t

r(x(s), α(s)) ds+ u(x(t+ h), t+ h)

}
(160)

so the theorem is proved.

Remark. The optimality condition is telling us a very intuitive fact: the optimal control for the process starting

from x at time t, has already taken the optimal control for the process starting from x(t + h) at time t + h into

consideration. As a result, we can view u(x(t+h), t+h) as the terminal cost (only depends on the endpoint x(t+h))

and
∫ t+h

t
r(x(s), α(s)) ds as the running cost (depends on how x(t) behaves in time [t, t+ h]). One might be able to

see the Markovian structure again from this expression.

To set up a PDE for value function u(x, t), it’s natural for us to prove that u is Lipschitz (so it’s almost

everywhere differentiable and the PDE can hold in the almost everywhere sense).

Theorem 9. (Boundedness and Lipschitz Continuity of Value Function) The value function u(x, t) under

the assumptions above is bounded and Lipschitz on Rn × [0, T ].

Proof. Since u(x, t) = infα∈A Cx,t[α] and r, g are assumed to be bounded, it’s obvious that u is also bounded

u(x, t) ≤ sup |r| · T + sup |g| (161)

Now fix t ∈ [0, T ] and consider x, x̂ ∈ R, apply the inf in the definition of value function, so ∀ε > 0, there exists

control α̂ and x̂(s) as the solution to the ODE with fixed control α̂ and initial value condition x̂(t) = x̂ such that

u(x̂, t) + ε ≥
∫ T

t

r(x̂(s), α̂(s)) ds+ g(x̂(T )) (162)

so let’s estimate the difference

u(x, t)− u(x̂, t) ≤ u(x, t)−
∫ T

t

r(x̂(s), α̂(s)) ds− g(x̂(T )) + ε (163)

≤
∫ T

t

r(x(s), α̂(s)) ds+ g(x(T ))−
∫ T

t

r(x̂(s), α̂(s)) ds− g(x̂(T )) + ε (164)

note that here we are taking x(s) as the solution to the ODE with initial value condition x(t) = x that

x′(s) = f(x(s), α̂(s)) (165)

since r, g are Lipschitz with Lipschitz constant Cr, Cg,

u(x, t)− u(x̂, t) ≤ Cr

∫ T

t

||x(s)− x̂(s)|| ds+ Cg||x(T )− x̂(T )||+ ε (166)
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in order to estimate
∫ T

t
||x(s)− x̂(s)|| ds, note that since f is also Lipschitz with constant Cf ,

||x′(s)− x̂′(s)|| = ||f(x(s), α̂(s))− f(x̂(s), α̂(s))|| (167)

≤ Cf ||x(s)− x̂(s)|| (168)

by Grownwall’s inequality,

||x(s)− x̂(s)|| ≤ C||x(t)− x̂(t)|| = C||x− x̂|| (169)

that’s why

u(x, t)− u(x̂, t) ≤ CT ||x− x̂||+ ε (170)

for some constant C and thus u is Lipschitz in variable x (the other side is similar).

To prove that it’s also Lipschitz in variable t, let’s fix x ∈ Rn and consider t, t̂ ∈ [0, T ]. For ∀ε > 0, there exists

control α and the solution x(·) to the ODE with fixed control α such that

u(x, t) + ε ≥ Cx,t[α] =

∫ T

t

r(x(s), α(s)) ds+ g(x(T )) (171)

consider the time-shifted control α̂(s) = α(s+ t− t̂) and x̂ as the solution to the ODE with fixed control α̂, one may

find x̂′(s) = f(x̂(s), α̂(s)) and d
dsx(s+ t− t̂) = x′(s+ t− t̂) = f(x(s+ t− t̂), α(s+ t− t̂)) = f(x(s+ t− t̂), α̂(s)). By

the uniqueness of the solution, we know that x̂(s) = x(s+ t− t̂), x̂(t̂) = x(t) = x, so

u(x, t̂)− u(x, t) ≤ u(x, t̂)−
∫ T

t

r(x(s), α(s)) ds− g(x(T )) + ε (172)

≤
∫ T

t̂

r(x̂(s), α̂(s)) ds+ g(x̂(T ))−
∫ T

t

r(x(s), α(s)) ds− g(x(T )) + ε (173)

≤
∫ T−t̂+t

T

r(x(s), α(s)) ds+ g(x̂(T ))− g(x(T )) + ε (174)

≤ sup |r| · |t− t̂|+ Cg · ||x̂(T )− x(T )||+ ε (175)

≤ C · |t− t̂|+ ε (176)

since ||x̂(T )− x(T )|| ≤ sup |f | · |T + t− t̂− T | = sup |f | · |t− t̂| so we have proved that u(x, t) is also Lipschitz in t

(the other side is similar).
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Hamilton-Jacobi-Bellman Equation (HJBE)

Now from the optimality condition and the Lipschitz continuity of the value function derived above, we can set

up a PDE describing the evolution of value function u(x, t).

Theorem 10. (HJBE for Value Function) The value function under assumptions above satisfies the HJBEut + infα∈A {f(x, α) ·Du+ r(x, α)} = 0 in Rn × (0, T )

u = g on Rn × {t}
(177)

Proof. When t = T , u = infα∈A Cx,T [α] =
∫ T

T
r(x(s), α(s)) ds+ g(x(T )) = g(x) gives the terminal condition.

When 0 < t < T , recall the optimality condition that for h > 0 such that t+ h ≤ T ,

u(x, t) = inf
α∈A

{∫ t+h

t

r(x(s), α(s)) ds+ u(x(t+ h), t+ h)

}
(178)

where x(·) is the solution to the ODE for fixed control α. Let’s modify both sides of this property to get HJBE, be

careful with the difference between x and x(·) since the previous one denotes the initial value while the latter one

denotes the solution to the PDE

u(x, t)− u(x, t+ h)

h
= inf

α∈A

{
1

h

∫ t+h

t

r(x(s), α(s)) ds+
u(x(t+ h), t+ h)− u(x, t+ h)

h

}
(179)

= inf
α∈A

{
1

h

∫ t+h

t

r(x(s), α(s)) ds+
u(x(t+ h), t+ h)− u(x(t), t+ h)

h

}
(180)

setting h→ 0+ on both sides to find

−ut(x, t) = inf
α∈A

{r(x(t), α(t)) +Du(x(t), t) · x′(t)} (181)

= inf
α∈A

{r(x(t), α(t)) +Du(x, t) · f(x(t), α(t))} (182)

now let’s neglect the initial time t and initial value x to denote the PDE as

ut + inf
α∈A

{r(x, α) +Du · f(x, α)} = 0 (183)

note that u being Lipschitz guarantees that the partial derivatives w.r.t. each variable exists almost everywhere.

Remark. We can find the connection between HJE and HJBE that if we set the Hamiltonian as

H(p, x) = inf
α∈A

{f(x, α) · p+ r(x, α)} (184)

then HJBE is just HJE ut+H(Du, x) = 0 but with a terminal value condition instead of an initial value condition.
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Remark. One may still recall the Hopf-Lax formula mentioned above to solve HJE ut + H(Du) = 0 with initial

value condition u(x, 0) = g(x) that

u(x, t) = inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(185)

with the Lagrangian L as the Frenchel conjugate of the Hamiltonian H. We can verify that such u(x, t) also provides

us with the solution to a special kind of HJBE.

Now that HJE has initial value condition but HJBE has terminal value condition, the most natural way is to do

the time reflection v(x, t) = u(x, T − t) such that the terminal value condition of u actually gives the initial value

condition of v. It’s easy to see that

v(x, 0) = u(x, T ) = g(x) (186)

then notice that vt = −ut, Dv = Du, so the HJBE for u can be reformulated as the following HJE for v thatvt +H(Dv, x) = 0 in Rn × (0, T )

v = g on Rn × {0}
(187)

with Hamiltonian

H(p, x) = − inf
α∈A

{f(x, α) · p+ r(x, α)} (188)

However, in order to let the Hopf-Lax formula work, we have to assume that r(x, α) = r(α), f(x, α) = f(α), i.e.

both running reward and the dynamics does not depend on the state x. So the HJE and the Hamiltonian

becomes vt +H(Dv) = 0 in Rn × (0, T )

v = g on Rn × {0}
(189)

and

H(p) = − inf
α∈A

{f(α) · p+ r(α)} (190)

So the Frenchel conjugate is

L(v) = sup
p∈Rn

{
p · v + inf

α∈A
{f(α) · p+ r(α)}

}
(191)
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and the solution to HJE is given by

v(x, t) = inf
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
(192)

= inf
y∈Rn

{
sup
p∈Rn

{
p · (x− y) + t inf

α∈A
{f(α) · p+ r(α)}

}
+ g(y)

}
(193)

as a result, the solution to HJBE is

u(x, t) = v(x, T − t) = inf
y∈Rn

{
sup
p∈Rn

{
p · (x− y) + (T − t) inf

α∈A
{f(α) · p+ r(α)}

}
+ g(y)

}
(194)

under the assumption that g is Lipschitz, H is convex and lim||p||→∞
H(p)
||p|| = +∞.

However, one might realize that although we have got an analytic solution for HJBE, the assumption that the

running reward and the dynamics both do not depend on state is too strong that most of the interesting examples would

not satisfy such assumption. This assumption only works well for a problem setting with a single state and many

actions to be chosen, i.e. the continuous-time bandit problem but fails for most reinforcement learning problems.

Although one would not be able to solve the HJBE analytically in all cases, our previous discussion about general

HJE ut+H(Du, x) = 0 still provides some insights. One can consider the Hamilton’s equation and the Euler-Lagrange

equations associated with the HJBE.

Infinite-Horizon Problem

Among our discussion, we are assuming that there exists some upper time limit T <∞ and the dynamics works

in time interval [0, T ]. However, one can also consider the infinite-horizon problem by taking T = ∞. Let’s adopt

all same assumptions for A, f, r, g above, and consider the admissible set

A = {α : [0,∞) → A : α(·) measurable} (195)

with x(·) as the unique solution to ODE x′(s) = f(x(s), α(s))

x(0) = x
(196)

for fixed control α. In order to ensure that the cost is well-defined on infinite time horizon, let’s introduce λ > 0 as

continuous-time discount rate and define the cost as

Cx[α] =

∫ ∞

0

e−λsr(x(s), α(s)) ds (197)
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and the value function as

u(x) = inf
α∈A

Cx[α] (198)

note that the biggest difference is that infinite time horizon problem under the Markovian setting has

time-homogeneous value function.

Remark. To see this, let’s assume that former definition still applies

Cx,t[α] =

∫ ∞

t

e−λsr(x(s), α(s)) ds (199)

and the value function is

u(x, t) = inf
α∈A

Cx,t[α] (200)

with the ODE having initial value condition x(t) = x. Now consider ∀t > 0,

Cx,t[α] =

∫ ∞

t

e−λsr(x(s), α(s)) ds (201)

=

∫ ∞

0

e−λ(s+t)r(x(s+ t), α(s+ t)) ds (202)

where x′(s) = f(x(s), α(s)), x(t) = x. However, let’s consider another solution x̂(s) to the ODE with fixed control

α̂(s) = α(s+ t) such that x̂′(s) = f(x̂(s), α̂(s)), x̂(0) = x, according to the uniqueness of the solution to the ODE, we

immediately know that x̂(s) = x(s+ t). So now

Cx,t[α] =

∫ ∞

0

e−λ(s+t)r(x(s+ t), α(s+ t)) ds (203)

= e−λt ·
∫ ∞

0

e−λsr(x̂(s), α̂(s)) ds (204)

= e−λt · Cx,0[α̂] (205)

and by taking inf on both sides, one would see that

u(x, t) = e−λt · u(x, 0) (206)

so the time t only appears in the discount factor e−λt. That’s why we only need to consider u(x, 0) and denote it as

u(x) by taking the time t as 0 by default.

Under all assumptions made above, one can see that u is bounded and if λ > Lips(f) then u is Lipschitz.

To argue this, one do the similar thing as done in the previous proofs. ∀x, x̂ ∈ Rn,∀ε > 0, there exists control
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α̂ ∈ A and the solution x̂(s) to the ODE with fixed control α̂ and initial value condition x̂(0) = x̂ such that

u(x̂) + ε ≥
∫ ∞

0

e−λsr(x̂(s), α̂(s)) ds (207)

now by definition,

u(x)− u(x̂) ≤ u(x)−
∫ ∞

0

e−λsr(x̂(s), α̂(s)) ds+ ε (208)

≤
∫ ∞

0

e−λsr(x(s), α̂(s)) ds−
∫ ∞

0

e−λsr(x̂(s), α̂(s)) ds+ ε (209)

where x(s) is the solution to the ODE with fixed control α̂ and initial value condition x(0) = x. So we know that

u(x)− u(x̂) ≤
∫ ∞

0

e−λs[r(x(s), α̂(s))− r(x̂(s), α̂(s))] ds+ ε (210)

≤ Cr ·
∫ ∞

0

e−λs · ||x(s)− x̂(s)|| ds+ ε (211)

and ||x′(s)− x̂′(s)|| = ||f(x(s), α̂(s))− f(x̂(s), α̂(s))|| ≤ Cf · ||x(s)− x̂(s)|| so by Grownwall’s inequality, we conclude

that

||x(s)− x̂(s)|| ≤ eCfs · ||x(0)− x̂(0)|| = eCfs · ||x− x̂|| (212)

so the estimates look like

u(x)− u(x̂) ≤ Cr · ||x− x̂|| ·
∫ ∞

0

e(Cf−λ)s ds+ ε (213)

so when Cf = Lips(f) < λ, the integral converges and is a constant, that’s why u is Lipschitz and is differentiable

almost everywhere.

To get the HJBE for such value function u(x), let’s plug in

u(x, t) = e−λt · u(x, 0) (214)

into the HJBE we derived for general optimal control problem to see that

ut(x, t)|t=0 = −λ · u(x, 0) (215)

so

−λ · u(x, 0) + inf
α∈A

{f(x, α) ·Du+ r(x, α)} = 0 (216)
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and we get the HJBE for infinite-horizon optimal control problem

λu− inf
α∈A

{f(x, α) ·Du+ r(x, α)} = 0 (217)

for value function u = u(x).

Till now, we have finished the discussion on optimal control problems. In the following context, we will talk

about stochastic control problem where the dynamics is not an ODE but an SDE. One would see that the PDE

approach is still similar to what we have done here but the probabilistic approach would be very different.
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For the following contents, we refer to the book Lectures on BSDEs, Stochastic Control, and

Stochastic Differential Games with Financial Applications by Rene Carmona and the book Continuous-

time Stochastic Control and Optimization with Financial Applications by Pham.

Stochastic Control Problem, PDE Approach

Problem Setting

In the setting of stochastic control, the state process is denoted as {Xt}, a stochastic process in Rd, generated as

the solution to a SDE for given control (action) {αt}, which is also a stochastic process. Similar to the deterministic

case, let’s first specify the set of all admissible controls one can choose from. Note that different from the deterministic

case, here we also have to specify the measurability of those controls, i.e. one cannot make use of the information

that can only be known in the future to determine the best control for the time being.

Let’s assume that the control αt at each fixed time t can take value in A, a subset of a Polish space. Most often,

we assume that A ⊂ Rk is a compact subset and A denotes the set of all admissible controls, i.e.

A = {α = {αt} : ∀t ≥ 0, αt ∈ A} (218)

let’s denote α as the whole stochastic process {αt} in the following context. Sometimes, there will be uniform

bounded condition added for α ∈ A and sometimes we would assume that

E
∫ T

0

||αt||2 dt <∞ (219)

, i.e. α ∈ L2([0, T ] × Ω) is in the L2 Hilbert space of stochastic processes on time interval [0, T ]. However, those

conditions are added as required and there’s no standard formulation of the admissible set.

Let’s then consider the measurability of admissible controls. Assume that we are in the finite time horizon

case and the time has upper limit T . Then for each t ∈ [0, T ], when one wants to choose the control, one

obviously cannot use all the information of {Xt}t∈[0,T ] since one cannot make any current decision based on future

information. Let’s denote {It} as a filtration standing for the information available to the controller at time

t, i.e. αt ∈ It. There are mainly four different kinds of settings for the measurability conditions of the admissible

set.

• OL (Open Loop) The setting where It = σ {X0} and αt = αt(t,X0, {Bs} |s∈[0,t]).

• CLPS (Closed Loop Perfect State) The setting where It = σ {Xs : s ∈ [0, t]} and αt = αt(t, {Xs} |s∈[0,t]).

• MPS (Memoryless Perfect State) The setting where It = σ {X0, Xt} and αt = αt(t,X0, Xt).

• FPS (Feedback Perfect State/Markovian) The setting where It = σ {Xt} and αt = αt(t,Xt).

In OL, the information available to the controller at time t is always the initial state and the noise so far. In MPS,

the information available to the controller at time t is the initial state and the current state. In FPS, the information
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available to the controller at time t is only the current state but the initial state can not be observed and in CLPS,

all history states are known to the controller. One might be able to find that OL is the most specific setting while

CLPS is the most general setting. By mentioning Markov games, we take the FPS setting by default.

Now the dynamics of the state process is given by the SDE

dXt = b(t,Xt, αt) dt+ σ(t,Xt, αt) dBt (220)

where the drift and diffusion coefficient b : [0, T ]× Rd × A → Rd, σ : [0, T ]× Rd × A → Rd×m. So Xt is a process

in Rd, the BM Bt here is of m-dimension and for each given control αt one can solve the SDE to know Xt (the

choice of action changes the state evolution). For the purpose of simplicity, we want to ensure the existence and

uniqueness of the strong solution to such SDE. Note that both coefficients depend on the control αt, so it’s

natural to make some additional assumptions to the admissible set that

A =

{
α : E

∫ T

0

||b(t, 0, αt)||2 + ||σ(t, 0, αt)||2 dt <∞

}
(221)

now we also assume that b(t, x, α), σ(t, x, α) are both Lipschitz in x so the existence and uniqueness of the

strong solution can be guaranteed. Let’s denote Xt,x,α = {Xt,x,α
s } |s∈[t,T ] as the unique solution to the following

SDE with initial value condition and given control α ∈ AdXt = b(t,Xt, αt) dt+ σ(t,Xt, αt) dBt

Xt = x
(222)

The cost functional is defined as

J(α) = E

[∫ T

0

f(s,Xs, αs) ds+ g(XT )

]
(223)

consisting of two parts, the running cost and the terminal cost, and we assume that f(t, x, α) is Lipschitz in x.

Now the objective of stochastic control problem is to find the optimal control α = α∗ such that it minimizes

the cost functional J(α).

Remark. Of course, such optimal control α∗ does not necessarily exist. To prove the existence, one needs to show

that A is a convex subset and J is convex, l.s.c. with compact level sets so that the existence of the minimum is

ensured. However, this does not seem to be very interesting in the scope of our discussion.

Remark. To mention the technique of absorbing the running cost and maintaining only the terminal cost, let’s

consider a new process

Yt =

∫ t

0

f(s,Xs, αs) ds (224)
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so J(α) = E [YT + g(XT )] = Eg̃(XT , YT ) if the function g̃ is defined as

g̃(x, y) = y + g(x) (225)

As a result, under the new setting, our state process becomes X̃t = (Xt, Yt), and the cost functional is J(α) =

Eg̃(X̃T ) with the same set of admissible controls. However, the cost of doing this is that: (i): the increase in the

dimension of state process (ii): Yt has dynamics dYt = f(t,Xt, αt) dt that has no diffusion terms.
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Example: Separable Control Problem

Consider the problem where a single firm facing regulations for pollution permits in time [0, T ]. The firm has

cumulative emissions Et up to time t generated by the SDEdEt = (bt − ξt) dt+ σt dBt

E0 = 0
(226)

where bt is the expected rate of emission change if there’s no regulation and ξt is the rate of abatement chosen by

the firm (so it’s an action/control). However, the larger rate of abatement the form chooses, the less it can produce,

so there is a cost function c : R → R characterizing the cost of lowering the emission. On the other hand, the form

can also choose to hold θt quantity of pollution permits at time t, with Yt characterizing the price of each pollution

permit (there is an allowance market where firms can trade permits). At last, our goal is to figure out the best

control ξ∗, θ∗ such that the utility of the firm is maximized for a given utility function U .

Now we make assumptions that bt, σt are adapted and bounded, c is C1, nondecreasing, strictly convex and

c′(−∞) = −∞, c′(+∞) = +∞, c(0) = 0, U is C1, increasing, strictly concave and U ′(−∞) = −∞, U ′(+∞) = +∞
(the Inada condition). Note that here BM Bt and Et are both 1-dimensional.

Let’s denote XT as the total wealth of the company at terminal time T with initial wealth X0 = x, then

XT = x+

∫ T

0

θt dYt −
∫ T

0

c(ξt) dt− ETYT (227)

here the second term on RHS stands for the wealth the firm gets in the allowance market by trading permits through

time [0, T ], the third term on RHS is the cost in production caused by the abatement in the emission, and the last

term on RHS is the final cost to eliminate all emissions with permits (there’s ET emissions altogether and each

permit costs YT ). Our goal is to find the optimal control ξ∗, θ∗ such that

EU
(
Xξ∗,θ∗

T

)
= sup

(ξ,θ)∈A
EU

(
Xξ,θ

T

)
(228)

the admissible set here only requires the integrability condition

E
∫ T

0

||bt − ξt||2 + ||σt||2 dt <∞ (229)

Let’s prove that the optimal abatement strategy is

ξ∗t = (c′)−1(Yt) (230)
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let’s rewrite the terminal wealth by replacing Et

ETYT = YT

(∫ T

0

(bt − ξt) dt+

∫ T

0

σt dBt

)
(231)

= YT

(∫ T

0

bt dt+

∫ T

0

σt dBt

)
− YT

∫ T

0

ξt dt (232)

note that ∫ T

0

(YT − Yt)ξt dt =

∫ T

0

(∫ T

t

dYs

)
ξt dt (233)

=

∫ T

0

(∫ s

0

ξt dt

)
dYs (234)

plug in to find

XT = x−
∫ T

0

c(ξt) dt+

∫ T

0

θt dYt − YT

(∫ T

0

bt dt+

∫ T

0

σt dBt

)
+

∫ T

0

Ytξt dt+

∫ T

0

(∫ s

0

ξt dt

)
dYs (235)

= x−
∫ T

0

[c(ξt)− Ytξt] dt+

∫ T

0

θt dYt − YT

∫ T

0

bt dt− YT

∫ T

0

σt dBt +

∫ T

0

(∫ t

0

ξs ds

)
dYt (236)

= x−
∫ T

0

[c(ξt)− Ytξt] dt+

∫ T

0

[
θt +

∫ t

0

ξs ds

]
dYt − YT

∫ T

0

bt dt− YT

∫ T

0

σt dBt (237)

call the first two terms on RHS as Bξ
T and the remaining terms on RHS as Aθ̃

T with the new control defined as

θ̃t = θt +
∫ t

0
ξs ds, so now B

ξ
T = x−

∫ T

0
[c(ξt)− Ytξt] dt

Aθ̃
T =

∫ T

0
θ̃t dYt − YT

∫ T

0
bt dt− YT

∫ T

0
σt dBt

(238)

those two parts are separated such that Bξ
T has nothing to do with θ̃ and Aθ̃

T has nothing to do with ξ if we see ξ, θ̃

as two independent controls (although they are actually not since the definition of θ̃ contains ξ). However, we can

notice that when (θ, ξ) traverses through the admissible set A , (θ̃, ξ) also traverses through the admissible set A

and vice versa. As a result,

sup
(ξ,θ)∈A

EU
(
Xξ,θ

T

)
= sup

(ξ,θ̃)∈A

EU
(
Xξ,θ

T

)
(239)

= sup
(ξ,θ̃)∈A

EU
(
Aθ̃

T +Bξ
T

)
(240)

= sup
θ̃∈A

sup
ξ∈A

EU
(
Aθ̃

T +Bξ
T

)
(241)
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so the optimal abatement rate ξ∗t is the ξt that maximizes Bξ
T (under the maximization of xi, Aθ̃

T is a constant and

note that the utility is increasing, under the assumptions, the maximum exists and (c′)−1 exists).

ξ∗t = argmax
ξt

{
x−

∫ T

0

[c(ξt)− Ytξt] dt

}
(242)

ξ∗t = (c′)−1(Yt) ∈ It (243)

Remark. The trick applied in this example is to set up a new control such that the wealth is a separable and argue

that the old set of controls traverse through the admissible set if and only if the new set of controls traverse through

the admissible set. As a result, the new controls can be seen as independent controls and two maximization can be

dealt with separately.

Note that one has to verify that the optimal control one get satisfies measurability requirements. For example,

in this example, we are taking the Markovian setting so ξ∗t can only depend on the value of all observable processes

at time t.

Remark. To get the intuition of such optimal abatement rate, it’s telling us that on observing the price of the

pollution permit Yt at time t, the firm shall always make sure that the marginal production cost c′(ξt) is equal

to the marginal emission cost Yt. In economics, it’s rational to only compare the marginal so we would get the

same conclusion from intuition.

Example: Separable Control Problem

Let’s use a slightly different example to illustrate the same trick once again. Now still consider a single firm

with regulation for emission allowances. Now the firm produce a source with price Pt following BS model such that

dPt

Pt
= µ(Pt) dt+ σ(Pt) dBt (244)

at each time the form can choose its rate of production qt with production costs c(qt). Similar to the example above,

the form has to buy permits for all the emission it produces. The price of the permit is denoted as Yt and now the

cumulative emission until time t, denoted Et, is proportional to the production amount until time t for fixed ε > 0

Et = εQt, E0 = 0 (245)

Qt =

∫ t

0

qs ds (246)

The firm has to decide θt, the quantity of permit to hold and qt, the rate of production at time t, so the control

is made up of the pair (θt, qt). Let’s still use XT for the total wealth of the firm at time T with initial wealth X0 = x,
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then

XT = x+

∫ T

0

Ptqt dt−
∫ T

0

c(qt) dt+

∫ T

0

θt dYt − ETYT (247)

= x+

∫ T

0

Ptqt dt−
∫ T

0

c(qt) dt+

∫ T

0

θt dYt − εQTYT (248)

the utility function U is provided and we wish to find optimal control θ∗, q∗ to maximize the expected terminal utility

EU
(
Xθ∗,q∗

T

)
= sup

θ,q∈A
EU

(
Xθ,q

T

)
(249)

Likewise, we make the following assumptions that µ, σ are C1 with bounded derivatives, cost function c is C1

and strictly convex, satisfies the Inada condition, i.e. c′(−∞) = −∞, c′(+∞) = +∞, and the utility function U is

C1, increasing, strictly concave and satisfy the Inada condition, i.e. U ′(−∞) = −∞, U ′(+∞) = +∞. The admissible

set of controls only have adaptability and integrability conditions as stated in the previous context.

Now the optimal production strategy should be

q∗t = (c′)−1(Pt − εYt) (250)

since the marginal cost of producing is c′(qt) + εYt (the rising in cost and the need to buy permit for increased

emission) and the marginal profit of producing is Pt. By previous explanations on the intuitions, it’s easy to see that

optimal control is achieved when the marginals are equal.

Let’s apply the same trick of separating two control variables here by transforming the term QTYT using Ito

formula (note that Qt has finite variation)

d(QtYt) = Qt dYt + Yt dQt (251)

QTYT =

∫ T

0

Qt dYt +

∫ T

0

Yt dQt (252)

=

∫ T

0

(∫ t

0

qs ds

)
dYt +

∫ T

0

Ytqt dt (253)

plug into the expression for XT to see that

XT = x+

∫ T

0

[(Pt − εYt)qt − c(qt)] dt+

∫ T

0

θt dYt − ε

∫ T

0

(∫ t

0

qs ds

)
dYt (254)

= x+

∫ T

0

[(Pt − εYt)qt − c(qt)] dt+

∫ T

0

[
θt − ε

∫ t

0

qs ds

]
dYt (255)
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denote the new control θ̃t = θt − ε
∫ t

0
qs ds to find that

XT = x+

∫ T

0

[(Pt − εYt)qt − c(qt)] dt+

∫ T

0

θ̃t dYt (256)

and separate it into two parts Aθ̃
T =

∫ T

0
θ̃t dYt

Bq
T = x+

∫ T

0
[(Pt − εYt)qt − c(qt)] dt

(257)

note that when (θ, q) traverse through the admissible set, so does (θ̃, q), so

sup
θ,q∈A

EU
(
Xθ,q

T

)
= sup

θ̃,q∈A

EU
(
Xθ,q

T

)
(258)

= sup
θ̃,q∈A

EU
(
Aθ̃

T +Bq
T

)
(259)

= sup
θ̃∈A

sup
q∈A

EU
(
Aθ̃

T +Bq
T

)
(260)

and the optimal production strategy will be attained when Bq
T attains its maximum (since now θ̃, q are considered

as independent controls and utility function is increasing, with Bq
T only depending on q and Aθ̃

T only depending on

θ̃)

q∗t = argmax
qt

{
x+

∫ T

0

[(Pt − εYt)qt − c(qt)] dt

}
(261)

q∗t = (c′)−1(Pt − εYt) ∈ It (262)

we can check that at time t, under the Markovian setting, Pt, Yt are observable to the controller so q∗t ∈ It satisfies
the measurability condition.

Remark. One might hope to use the similar technique to figure out the optimal quantity of permit to hold since

θ̃∗t = argmax
θ̃t

{∫ T

0

θ̃t dYt

}
(263)

however, one may find that by setting the derivative w.r.t. θ̃t as 0, one cannot find the optimal θ̃t because of the

measurability issue (YT is not known at time t). So one cannot find an admissible control from this problem as we

have done for q∗t and one has to consider instead

θ̃∗t = argmax
θ̃t

{
EU

(∫ T

0

θ̃t dYt +Bq∗

T

)}
(264)
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so by taking the derivative, one would get

E

[
U ′

(∫ T

0

θ̃∗t dYt +Bq∗

T

)
· (YT − Y0)

]
= 0 (265)

and we will see that
∫ T

0
θ̃∗t dYt has something to do with the process Y after time t, so the optimal control θ̃∗t is

hard to figure out (especially to ensure the measurability). This is telling us that the two examples shown above have

easy and intuitive optimal control solution because of the simplicity of the example and generally it’s hard to find the

admissible optimal control.
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Value Function, HJBE and the PDE Approach

Now the PDE approach to stochastic control focuses on applying the dynamic programming principle,

setting up value functions and deriving HJBE of the value functions to solve the problem.

Let’s assume that we are under the Markovian setting and the cost after time t sticking to control α with

initial value condition Xt = x is denoted as

J(t, x, α) = E

[∫ T

t

f(s,Xs, αs) ds+ g(XT )
∣∣∣Xt = x

]
(266)

(note that here Xs is the solution to the SDE for given control α) and let’s denote At as the admissible set of controls

α over time interval [t, T ] with measurability and integrability conditions

E
∫ T

t

||b(s,Xs, αs)||2 + ||σ(s,Xs, αs)||2 ds <∞ (267)

and the HJB value function is defined as

v(t, x) = inf
α∈At

J(t, x, α) (268)

the lowest possible cost with initial condition Xt = x over all admissible controls. Since we are planning to find the

HJBE that such value function is satisfying, it’s natural to ask whether the value function is differentiable at all

points and what conditions are needed such that a PDE for the value function can be constructed.

Remark. We can also denote J(t, x, α) = E
[∫ T

t
f(s,Xt,x,α

s , αs) ds+ g(Xt,x,α
T )

]
and Xt,x,α

s denotes the value of the

solution to the SDE at time s with fixed control α and initial value condition Xt = x. It’s easy to see that those two

definitions are equivalent.

Example: Regularity Issues of Value Function

Let’s look at an example where d = 1, i.e. Xt is 1-dimensional process with A = [−1, 1], σ = 0, f = 0, b(t, x, α) =

α, g(x) = −x2. So now we know that

dXt = αt dt (269)

J(t, x, α) = E
[
−X2

T

∣∣∣Xt = x
]

(270)
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now conditioning on Xt = x, we know Xs = x+
∫ s

t
αr dr so

J(t, x, α) = −

(
x+

∫ T

t

αr dr

)2

(271)

v(t, x) = inf
α∈At

−

(
x+

∫ T

t

αr dr

)2
 (272)

it’s clear that if x ≥ 0 then since ∀s ∈ [t, T ], αs ∈ A = [−1, 1], the inf is attained when ∀s ∈ [t, T ], αs = 1 and if x ≤ 0

then the inf is attained when ∀s ∈ [t, T ], αs = −1. So the value function is

v(t, x) =

−(x+ T − t)2 x ≥ 0

−(x− T + t)2 x < 0
(273)

which is continuous but not differentiable at 0 even under this extremely simple setting.

Example: Value Function as Convex Envelope

Consider another example where d = k = 1, b = 0 so Xt and the control αt are still 1-dimensional and

σ(t, x, α) = α with f = 0, g continuous and bounded from above and A = R. So now

dXt = αt dBt (274)

J(t, x, α) = E [g(XT )|Xt = x] (275)

since we will be varying the time variable from t to t + h a little bit for h → 0+ to set up a PDE for the value

function (as shown later), it’s natural to see that we would want to apply Ito formula for the value function v, so

whether v ∈ C1,2 is then a problem of our concern. However, in this example, we can show that if v ∈ C1,2, then v

is independent of time t and is equal to the convex envelope g∗∗ of g (g∗∗ is the double Frenchel conjugate

of g, it can be proved that it’s the convex envelope).

Now that Xs|Xt=x = x +
∫ s

t
αr dBr and note that {αr, r ∈ [t, s]} ∈ At satisfies the integrability condition that

E
∫ T

t
α2
s ds <∞, it’s obvious that Xs|Xt=x is a MG in s for any given control α ∈ At. Then we find

v(t, x) = inf
α∈At

E [g(XT )|Xt = x] (276)

≥ inf
α∈At

E [g∗∗(XT )|Xt = x] (277)

≥ inf
α∈At

g∗∗(E(XT |Xt = x)) (278)

= inf
α∈At

g∗∗(x) (279)

= g∗∗(x) (280)
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by applying Jensen’s inequality, so v has to be larger than the convex envelope for ∀x ∈ R.
For the other side, if v ∈ C1,2, Ito formula holds and

v(t+ h,Xt+h) = v(t,Xt) +

∫ t+h

t

∂tv(s,Xs) ds+

∫ t+h

t

∂xv(s,Xs) dXs +
1

2

∫ t+h

t

∂xxv(s,Xs) d⟨X,X⟩s (281)

= v(t,Xt) +

∫ t+h

t

(
∂t +

α2
s

2
∂xx

)
v(s,Xs) ds+

∫ t+h

t

∂xv(s,Xs) · αs dBs (282)

assume that the last stochastic integral is a MG, we can find that

E [v(t+ h,Xt+h)|Xt = x] = v(t, x) + E

[∫ t+h

t

(
∂t +

α2
s

2
∂xx

)
v(s,Xs) ds

∣∣∣Xt = x

]
(283)

by applying the property of value function that E [v(t+ h,Xt+h)|Xt = x]− v(t, x) ≥ 0 (which will be proved below),

we get that

∀h > 0,E

[∫ t+h

t

(
∂t +

α2
s

2
∂xx

)
v(s,Xs) ds

∣∣∣Xt = x

]
≥ 0 (284)

dividing both sides by h and take h→ 0+ to find

∀(t, x, α) ∈ [0, T ]× R× R,
(
∂t +

α2
t

2
∂xx

)
v(t, x) ≥ 0 (285)

by taking αt = 0 as the constant control, we find that ∂tv ≥ 0, so for each fixed x ∈ R, v is always increasing w.r.t.

time t. Also note that ∂xxv ≥ 0 must hold since otherwise we can always take αt to be large enough such that the

inequality above fails, so v has to be convex in x. By Fatou’s lemma and continuity of g,

∀0 ≤ t < T, v(t, x) ≤ lim
s↗T

v(s, x) (286)

= lim
s↗T

inf
α∈As

E [g(XT )|Xs = x] (287)

≤ lims↗TE [g(XT )|Xs = x] (288)

≤ E
[
lims↗T g(X

s,x
T )

]
(289)

= g(x) (290)

where Xs,x
T denotes the solution to the SDE with initial value condition Xs = x. So for any fixed time t, v is always

a convex function dominated by g, v(t, x) ≤ g∗∗(x) by the maximality of convex envelope, and we conclude that

v(t, x) = g∗∗(x) (291)

actually has nothing to do with t.
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Remark. The inequality E [v(t+ h,Xt+h)|Xt = x]− v(t, x) ≥ 0 we are using here is a natural property of the value

function. The meaning is that since value function is already the optimal cost among all admissible controls based on

the observation of the initial value condition Xt = x, if one adopts the control that is the optimal control at

time t in time interval [t, t+ h) but follows the optimal control at time t+ h in time interval [t+ h, T ],

then such strategy cannot be better than following the optimal control at time t in time interval [t, T ].

This would be explained in a later context.

Remark. This example shows that we can easily make up a ”bad” value function. Let’s pick g continuous and upper

bounded on R with the convex envelope g∗∗ being not C2, then obviously v(t, x) for this stochastic control problem

would not be C1,2. For example, consider g(x) = −|x| then g∗∗ = g = v. This is a type of control problems called

singular stochastic control problem.

However, as proved in the deterministic case for HJE, when f = 0 and g is Lipschitz, we can make sure that v is

Lipschitz in x for fixed time t ∈ [0, T ] and when A is bounded one can also get some estimates on |v(t, x)− v(t̂, x)|.
Since Lipschitz functions are almost everywhere differentiable, this makes it possible for us to set up a PDE

for the value function. We only prove the Lipschitz property here for simplicity.

Theorem 11. (Lipschitz Value Function in x) When f = 0 and g is Lipschitz, the value function v is Lipschitz

in x for fixed time t ∈ [0, T ].

Proof. Fix time t ∈ [0, T ] and consider ∀x, x̂ ∈ Rd, by the definition of value function, ∀ε > 0,∃α̂, v(t, x̂) + ε ≥
E [g(XT )|Xt = x̂] with the Xt as the solution to the SDE with fixed control α̂

v(t, x)− v(t, x̂) ≤ inf
α∈At

E[g(XT )|Xt = x]− E [g(XT )|Xt = x̂] + ε (292)

≤ Eg(Xt,x,α̂
T )− Eg(Xt,x̂,α̂

T ) + ε (293)

≤ Lips(g) · E|Xt,x,α̂
T −Xt,x̂,α̂

T |+ ε (294)

let’s consider h(s) = E|Xt,x,α̂
s −Xt,x̂,α̂

s |, then

h(s) = E
∣∣∣∣x− x̂+

∫ s

t

[b(r,Xt,x,α̂
r , α̂r)− b(r,Xt,x̂,α̂

r , α̂r)] dr +

∫ s

t

[σ(r,Xt,x,α̂
r , α̂r)− σ(r,Xt,x̂,α̂

r , α̂r)] dr

∣∣∣∣ (295)

≤ |x− x̂|+ (Lips(b) + Lips(σ)) · E
∫ s

t

|Xt,x,α̂
r −Xt,x̂,α̂

r | dr (296)

= |x− x̂|+ (Lips(b) + Lips(σ)) ·
∫ s

t

h(r) dr (297)

since we have assumed that b, σ are both Lipschitz. By Grownwall’s inequality,

∀s ∈ [t, T ], h(s) ≤ |x− x̂| · eC(s−t) (298)

so we conclude that v(t, x)− v(t, x̂) ≤ C · h(T ) + ε ≤ C ′ · |x− x̂| which completes half of the proof. The other side

can be done similarly.
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Dynamic Programming Principle (DPP)

Theorem 12. (Dynamic Programming Principle) If the value function v is continuous, then for any initial

value condition (t, x), and any stopping time τ that takes values in [t, T ],

v(t, x) = inf
α∈At

E
[∫ τ

t

f(s,Xt,x,α
s , αs) ds+ v(τ,Xt,x,α

τ )

]
(299)

Remark. One may find that this theorem is an analogue of the optimality condition we have mentioned above for

deterministic optimal control problem. The meaning of the theorem is that the best control α at time t can be found

by minimizing the sum of two parts: (i): the contribution of cost in time interval [t, τ ] sticking to control α (ii): the

contribution of cost in time interval [τ, T ] sticking to the optimal control at time τ . So this theorem is showing us

the time consistency condition for the value function.

Note that the difference of this property in deterministic control and stochastic control lies in the fact that: (i):

we are taking inf of an expectation since the cost is actually random (ii): the deterministic perturbed time t+ h can

be replaced by any stopping time that takes values in [t, T ], allowing us to have more freedom.

Proof. Notice that ∀α ∈ At, v(t, x) ≤ J(t, x, α) so let us write J(t, x, α) in terms of the stopping time ∀τ ∈ τt,T

(where τt,T denotes the set of all stopping time that takes values in [t, T ])

J(t, x, α) = E

[∫ T

t

f(s,Xs, αs) ds+ g(XT )
∣∣∣Xt = x

]
(300)

= E

[
E

(∫ T

t

f(s,Xs, αs) ds+ g(XT )
∣∣∣Fτ

)∣∣∣Xt = x

]
(301)

= E

[∫ τ

t

f(s,Xs, αs) ds+ E

(∫ T

τ

f(s,Xs, αs) ds+ g(XT )
∣∣∣Fτ

)∣∣∣Xt = x

]
(302)

= E
[∫ τ

t

f(s,Xs, αs) ds+ J(τ,Xτ , α)
∣∣∣Xt = x

]
(303)

by tower property. Now replace the J inside the condition expectation with value function v to find

J(t, x, α) ≥ E
[∫ τ

t

f(s,Xs, αs) ds+ v(τ,Xτ )
∣∣∣Xt = x

]
(304)

and take inf on both sides w.r.t. τ ∈ τt,T , take inf on both sides w.r.t. control α ∈ At to find

v(t, x) ≥ inf
α∈At

inf
τ∈τt,T

E
[∫ τ

t

f(s,Xt,x,α
s , αs) ds+ v(τ,Xt,x,α

τ )

]
(305)

On the other hand, since value function is the inf of cost, ∀ε > 0,∀τ ∈ τt,T , there exists ε-optimal strategy

αε ∈ Aτ such that

v(τ,Xτ ) + ε ≥ J(τ,Xτ , α
ε) (306)

44



Stochastic Control notes written by Haosheng Zhou CONTENTS

in order to argue that the value function has some upper bound, let’s figure out the best control we are able to design

so far. Now αε is nearly the best control at time τ , so we would expect to see that sticking to any current control

α ∈ At until stopping time τ and switch to the nearly best control αε after time τ would be a good strategy (Note

that here we are switching to the best strategy at time τ since the admissible control αε ∈ Aτ should satisfy

the measurability condition under the Markov setting that αε = αε(τ,Xτ ) ∈ Fτ so there’s no way to know αε before

time τ). So we construct

α̂s =

αs s ∈ [t, τ ]

αε
s s ∈ [τ, T ]

∈ At (307)

and

∀α ∈ At, v(t, x) ≤ J(t, x, α̂) (308)

= E

[∫ T

t

f(s,X α̂
s , α̂s) ds+ g(X α̂

T )
∣∣∣Xt = x

]
(309)

= E

[∫ τ

t

f(s,Xα
s , αs) ds+

∫ T

τ

f(s,X α̂
s , α̂s) ds+ g(X α̂

T )
∣∣∣Xt = x

]
(310)

= E
[∫ τ

t

f(s,Xα
s , αs) ds+ J(τ,Xτ , α̂)

∣∣∣Xt = x

]
(311)

≤ E
[∫ τ

t

f(s,Xα
s , αs) ds+ v(τ,Xτ )

∣∣∣Xt = x

]
+ ε (312)

by first taking the sup w.r.t. τ ∈ τt,T on both sides and then the inf on both sides w.r.t. control α ∈ At to find

v(t, x) ≤ inf
α∈At

sup
τ∈τt,T

E
[∫ τ

t

f(s,Xt,x,α
s , αs) ds+ v(τ,Xt,x,α

τ )

]
(313)

Combining two inequalities to see the DPP

v(t, x) = inf
α∈At

sup
τ∈τt,T

E
[∫ τ

t

f(s,Xt,x,α
s , αs) ds+ v(τ,Xt,x,α

τ )

]
= inf

α∈At

inf
τ∈τt,T

E
[∫ τ

t

f(s,Xt,x,α
s , αs) ds+ v(τ,Xt,x,α

τ )

]
(314)

Remark. We have actually shown that the selection of stopping time has no impact on the value function,

so any stopping time τ ∈ τt,T works. This is because we are first fixing the stopping time and then select a good

enough control, the inf w.r.t. control α has already taken the stopping time into consideration!
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HJBE of Stochastic Control Problem

Taking the stopping time in DPP as the trivial one τ = t + h such that h > 0, t + h ≤ T , one would get the

following HJBE for the stochastic control problem. Let’s denote Lα as the infinitesimal generator of the diffusion

process Xt for fixed control α. Then from stochastic calculus, we know that

Lαf(x) = b(t, x, α) · ∇xf(x) +
1

2
Tr
(
σ(t, x, α) · σT (t, x, α) · ∇2

xf(x)
)

(315)

where b ∈ Rd, σ ∈ Rd×m are drift and diffusion coefficients of the dynamics, ∇xf is the gradient of f w.r.t. variable

x and ∇2
xf is the Hessian of f w.r.t. variable x.

Theorem 13. (HJBE of Stochastic Control Problem) Assume that v ∈ C1,2([0, T ] × Rd) and f ∈ C([0, T ] ×
Rd ×A) for each fixed control α ∈ A and assume the existence of the optimal control α∗ ∈ A . Then

∀(t, x) ∈ [0, T ]× Rd, ∂tv(t, x) + inf
α∈A

{Lαv(t, x) + f(t, x, α)} = 0 (316)

Proof. By taking the stopping time in DPP as the trivial one τ = t+ h such that h > 0, t+ h ≤ T , we find that

v(t, x) = inf
α∈At

E

[∫ t+h

t

f(s,Xt,x,α
s , αs) ds+ v(t+ h,Xt,x,α

t+h )

]
(317)

apply Ito formula to see

v(t+ h,Xt,x,α
t+h ) = v(t,Xt,x,α

t ) +

∫ t+h

t

∂tv(s,X
t,x,α
s ) ds+

∫ t+h

t

∂xv(s,X
t,x,α
s ) dXt,x,α

s (318)

+
1

2

∫ t+h

t

∂xxv(s,X
t,x,α
s ) d⟨Xt,x,α, Xt,x,α⟩s (319)

= v(t, x) +

∫ t+h

t

(∂t + Lα) v(s,Xt,x,α
s ) ds+

∫ t+h

t

∂xv(s,X
t,x,α
s ) · σ(s,Xt,x,α

s , αs) dBs (320)

assume that the last stochastic integral is a MG, we can find that

E [v(t+ h,Xt+h)|Xt = x] = v(t, x) + E

[∫ t+h

t

(∂t + Lα) v(s,Xα
s ) ds

∣∣∣Xt = x

]
(321)

by noticing that from DPP we have

∀α ∈ At, v(t, x) ≤ E

[∫ t+h

t

f(s,Xt,x,α
s , αs) ds+ v(t+ h,Xt,x,α

t+h )

]
(322)

= v(t, x) + E

[∫ t+h

t

(∂t + Lα) v(s,Xα
s ) + f(s,Xα

s , αs) ds
∣∣∣Xt = x

]
(323)

dividing both sides by h and apply the intermediate value theorem for integral, we get (note that the diffusion process
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Xt is chosen as the version with continuous sample path and f is continuous)

∀α ∈ At, 0 ≤ (∂t + Lα)v(t, x) + f(t, x, α) (324)

taking inf on both sides to see

inf
α∈At

{(∂t + Lα)v(t, x) + f(t, x, α)} ≥ 0 (325)

The equality directly comes from the assumption that the optimal control α∗ ∈ At exists and can attain the inf

in the value function. As a result, the inequality in DPP becomes equality and

(∂t + Lα∗
)v(t, x) + f(t, x, α∗) = 0 (326)

that’s why we get the HJBE

inf
α∈At

{(∂t + Lα)v(t, x) + f(t, x, α)} = 0 (327)

Remark. Now one can see why the argument we have made in the example above that E [v(t+ h,Xt+h)|Xt = x] ≥
v(t, x) is true. This is just a simple corollary of the DPP.

Remark. For maximization problem, just change the inf w.r.t. control in DPP into sup and DPP still holds, so the

HJBE now becomes

∀(t, x) ∈ [0, T ]× Rd, ∂tv(t, x) + sup
α∈A

{Lαv(t, x) + f(t, x, α)} = 0 (328)
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Verification Theorem

Now that we know the value function satisfies the HJBE, and we wonder whether solving the HJBE necessarily

gives the value function. In other words, we want to see that HJBE actually characterizes the value function.

In such case, by solving the HJBE we would know the value function immediately, which is the key to the PDE

approach of solving stochastic control problems. The condition is given by the following verification theorem in the

Markovian case.

Theorem 14. (Verification Theorem for Finite Horizon Case) Let w ∈ C1,2([0, T ] × Rd) ∩ C([0, T ] ∩ Rd)

with growth condition

∃C > 0,∀(t, x) ∈ [0, T ]× Rd, |w(t, x)| ≤ C(1 + ||x||2) (329)

now if ∀(t, x) ∈ [0, T ]× Rd,−∂tw(t, x)− infα∈A {Lαw(t, x) + f(t, x, α)} ≤ 0

∀x ∈ Rd, w(T, x) ≤ g(x)
(330)

then w ≤ v for value function v.

Moreover, if ∀x ∈ Rd, w(T, x) = g(x) and exists measurable α̂(t, x) : [0, T ]× Rd → A such that

∀(t, x) ∈ [0, T ]× Rd,−∂tw(t, x)− inf
α∈A

{Lαw(t, x) + f(t, x, α)} = −∂tw(t, x)− [Lα̂(t,x)w(t, x) + f(t, x, α̂(t, x))] = 0

(331)

and α̂(s,X
t,x,α̂(t,x)
s ) ∈ At, then w = v for value function v and α̂ is the optimal Markovian control.

Proof. Consider applying Ito formula for w(s ∧ τ,Xt,x,α
s∧τ ), τ ∈ τt,∞ is any stopping time that takes value in [t,∞)

w(s ∧ τ,Xt,x,α
s∧τ ) = w(t, x) +

∫ s∧τ

t

∂tw(u,X
t,x,α
u ) du+

∫ s∧τ

t

∂xw(u,X
t,x,α
u ) dXt,x,α

u (332)

+
1

2

∫ s∧τ

t

∂xxw(u,X
t,x,α
u ) d⟨Xt,x,α, Xt,x,α⟩u (333)

= w(t, x) +

∫ s∧τ

t

(∂t + Lα)w(u,Xt,x,α
u ) du+

∫ s∧τ

t

σ(u,Xt,x,α
u , αu) · ∂xw(u,Xt,x,α

u ) dBu (334)

now in order to bound the last stochastic integral term, choose the stopping time τ as

τn = inf

{
s ≥ t :

∫ s

t

[σ(u,Xt,x,α
u , αu) · ∂xw(u,Xt,x,α

u )]2 du ≥ n

}
(335)

when the quadratic variation of the stochastic integral exceeds n we stop immediately. Such τn ↗ ∞ (n→ ∞) and

it’s obvious that this series of stopping time reduces the local MG, so we conclude that now
∫ s∧τn
t

σ(u,Xt,x,α
u , αu) ·

∂xw(u,X
t,x,α
u ) dBu is a U.I. MG in s on time interval [t, T ].
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Take expectation on both sides to get rid of the stochastic integral term

Ew(s ∧ τn, Xt,x,α
s∧τn ) = w(t, x) + E

∫ s∧τn

t

(∂t + Lα)w(u,Xt,x,α
u ) du (336)

≥ w(t, x)− E
∫ s∧τn

t

f(u,Xt,x,α
u , αu) du (337)

because of the inequality condition and the result we have derived above shall hold for ∀α ∈ At. Notice that∣∣∣∣∫ s∧τn

t

f(u,Xt,x,α
u , αu) du

∣∣∣∣ ≤ ∫ s∧τn

t

∣∣f(u,Xt,x,α
u , αu)

∣∣ du (338)

≤
∫ T

t

∣∣f(u,Xt,x,α
u , αu)

∣∣ du (339)

which is integrable (a natural assumption) and under the integrability condition of admissible control that E
∫ T

0
||b(t, 0, αt)||2+

||σ(t, 0, αt)||2 dt <∞, we have E sups∈[t,T ] ||Xt,x
s ||2 <∞, so

Ew(s ∧ τn, Xt,x,α
s∧τn ) ≤ C[1 + E(Xt,x,α

s∧τn )
2] ≤ C

1 + E

(
sup

s∈[t,T ]

Xt,x,α
s

)2
 <∞ (340)

by applying the growth condition on w. So now set n→ ∞ to find that

Ew(s,Xt,x,α
s ) ≥ w(t, x)− E

∫ s

t

f(u,Xt,x,α
u , αu) du (341)

by dominated convergence theorem. Set s→ T− to find that

Eg(Xt,x,α
T ) ≥ Ew(T,Xt,x,α

T ) ≥ w(t, x)− E
∫ T

t

f(u,Xt,x,α
u , αu) du (342)

by dominated convergence theorem again. Now take inf w.r.t. the control α ∈ At to get

v(t, x) ≥ w(t, x) (343)

When w(T, x) = g(x) and exists α̂(t, x), after removing the stochastic integral term (by similar stopping time

argument as above), we get

Ew(s,Xt,x,α̂
s ) = w(t, x) + E

∫ s

t

(∂t + Lα̂(t,x))w(u,Xt,x,α̂
u ) du (344)

= w(t, x) + E
∫ s

t

f(u,Xt,x,α̂
u , α̂u) du (345)
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by the definition of α̂(t, x) as the control that achieves the inf in HJBE for all pair (t, x). By setting s→ T− again,

Eg(Xt,x,α̂
T ) = Ew(T,Xt,x,α̂

T ) = w(t, x)− E
∫ T

t

f(u,Xt,x,α̂
u , α̂u) du (346)

by dominated convergence theorem and one might find that the terms relevant with g, f give the definition of

J(t, x, α̂(t, x)), so we see that

J(t, x, α̂(t, x)) = w(t, x) (347)

naturally w(t, x) ≥ v(t, x) and the theorem is proved.

Remark. In particular, when the control space A = {a0} only contains one single admissible control, HJBE turns

into ∂tw(t, x) + Lαw(t, x) + f(t, x, a0) = 0

w(T, x) = g(x)
(348)

and the value function is

v(t, x) = J(t, x, a0) = E

[∫ T

t

f(s,Xt,x,a0
s , a0) ds+ g(Xt,x,a0

T )

]
(349)

and the verification theorem is actually just the Feynman-Kac formula since it tells us that the C1,2 solution to

such PDE is characterized by

w(t, x) = E

[∫ T

t

f(s,Xa0
s , a0) ds+ g(Xa0

T )
∣∣∣Xa0

t = x

]
= v(t, x) (350)

Remark. The time we use verification theorem is typically after solving the HJBE. We check that the solution

is C1,2 has growth condition and check by implicit function theorem that the optimal control α̂ that

minimizes the inf in HJBE can be written as a function of (t, x). Then verification theorem tells us that

such solution must be the value function.
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Stochastic Control Problem: PDE Approach

Now that we have described the main tools for the PDE approach to solve stochastic control problems. However,

our description is not very organized since we have made a lot of different assumptions within the discussions. Let’s

collect all non-trivial assumptions we have made so far and present a systematic way for the PDE approach.

• Assume the value function v ∈ C1,2 (in order to apply Ito’s formula)

• Assume that the stochastic integral in the calculation is a true MG (in order to ignore it after taking expectation)

• Assume that the optimal control α∗ ∈ A always exists (in order to turn the inequality into equality in HJBE)

• Assume that for each initial value pair (t, x), there always exists α̂ = α̂(t, x) that minimizes Lαv(t, x)+f(t, x, α)

(condition of verification theorem)

• Solve the HJBE to get the value function, check the conditions of the verification theorem (C1,2 solution,

growth condition, existence of α̂(t, x))

• After solving out the optimal control, check that it’s admissible, the value function is C1,2, and the local MG

is actually a MG

• Note that v ∈ C1,2 can also be checked by applying uniform ellipticity (lowest eigenvalue of σσT bounded

away from 0, ∃C > 0,∀x, y ∈ Rd, α ∈ A , yTσ(x, α)σT (x, α)y ≥ C||y||2)

• The existence of the minimizer α̂ = α̂(t, x) can be checked through convex analysis and implicit function

theorem
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Infinite Horizon Case

The infinite horizon case is actually the same as what we have done for HJE, the deterministic optimal control

problem. For the purpose of completeness, we state it again here. The difference in formulation is the introduction

of the discount factor β > 0 and the fact that no terminal reward exists. The expected cost after time t following

control α is

J(t, x, α) = E
[∫ ∞

t

e−βsf(s,Xt,x,α
s , αs) ds

]
(351)

the introduction of discount factor is to ensure that the integral will be finite for a general class of f . However, by

changing variables u = s − t and assuming that f is time-homogeneous (f(s,Xt,x,α
s , αs) = f(Xt,x,α

s , αs)) one

might find that

J(t, x, α) = e−βt · E
[∫ ∞

0

e−βsf(Xt,x,α
s+t , αs+t) ds

]
(352)

= e−βt · E
[∫ ∞

0

e−βsf(X0,x,α
s , αs) ds

]
(353)

= e−βt · J(0, x, α) (354)

under the Markovian setting. As a result, we remove the time variable for simplicity and consider a slightly different

definition that

J(x, α)
def
= J(0, x, α) = E

[∫ ∞

0

e−βsf(X0,x,α
s , αs) ds

]
(355)

as a result, the value function is defined as

v(x)
def
= inf

α∈A
J(x, α) (356)

independent of time and the connection of this value function with the previously defined value function is that

v(x) = v(0, x) = eβt · v(t, x) (357)

Remark. The β can be understood as the opposite of the continuous-time interest rate. Under the condition that

the discount factor has the formulation as e−βt and the fact that f is time-homogeneous, we can eliminate the time

variable in t (failure in either assumption would cause mistake in doing so).

The reason we mention the connection between the value function that only works for the special infinite horizon

case and that for the general case is that we would still be able to apply the general results to get the HJBE.

Theorem 15. (HJBE of Stochastic Control Problem in Infinite Horizon Case) Assume that v ∈ C2(Rd)
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and f ∈ C(Rd ×A) for each fixed control α ∈ A and assume the existence of the optimal control α∗ ∈ A . Then

∀x ∈ Rd,−βv(x) + inf
α∈A

{Lαv(x) + f(x, α)} = 0 (358)

Proof. Denote the general value function as u(t, x) so now v(x) = u(0, x) = eβt · u(t, x). Since ∂tu(t, x) = −βe−βt ·
v(x), Lαu(t, x) = e−βt · Lαv(x), apply the HJBE for u(t, x) to know that

∀t > 0, x ∈ Rd, ,−βe−βt · v(x) + inf
α∈A

{
e−βt · Lαv(x) + f(x, α)

}
= 0 (359)

set t = 0 to get

∀x ∈ Rd,−βv(x) + inf
α∈A

{Lαv(x) + f(x, α)} = 0 (360)

For the sake of completeness, let’s refer to the verification theorem in the infinite horizon case mentioned above.

The statements are a little bit different but the thought of the proof is the same.

Theorem 16. (Verification Theorem for Infinite Horizon Case) Let w ∈ C2(Rd) with growth condition

∃C > 0,∀x ∈ Rd, |w(x)| ≤ C(1 + ||x||2) (361)

now if ∀x ∈ Rd, βw(x)− infα∈A {Lαw(x) + f(x, α)} ≤ 0

∀x ∈ Rd,∀α ∈ A , limT→∞e
−βT · Ew(X0,x,α

T ) ≤ 0
(362)

then w ≤ v for value function v.

Moreover, if there exists measurable α̂(x) : Rd → A such that

∀x ∈ Rd, βw(x)− inf
α∈A

{Lαw(x) + f(x, α)} = βw(x)− [Lα̂(x)w(x) + f(x, α̂(x))] = 0 (363)

and α̂(X
0,x,α̂(x)
s ) ∈ A , limT→∞e

−βT · Ew(X0,x,α̂(x)
T ) ≥ 0, then w = v for value function v and α̂ is the optimal

Markovian control.

Proof. We just list the sketch of the proof here. The proof is almost the same as that for finite horizon case. Just

consider applying Ito formula for e−β(T∧τn)w(X0,x
T∧τn

) with discount factor where τn is still the stopping time that

reduces the local MG and T is any positive number, take expectation on both sides and use dominated convergence

theorem (set T → ∞) to conclude.

Remark. The reason that two extra conditions limT→∞e
−βT ·Ew(X0,x,α

T ) ≤ 0 and limT→∞e
−βT ·Ew(X0,x,α̂(x)

T ) ≥ 0

appear is due to the difference that in infinite horizon case we don’t have the trivial bound that s∧ τn ≤ T for a fixed
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time limit T and we don’t have terminal costs.

In brief, besides checking that the solution to HJBE is C2, has the growth condition and the existence

of α̂(x), we also have to check other two mild conditions on the tail growth rate of the expectation of

the solution compared to the discount factor. When the admissible control space A = {a0}, note again that

verification theorem is just the Feynman-Kac formula.

Remark. For maximization problems, in the finite horizon case still check the same conditions while in the infinite

horizon case, the two extra conditions become

limT→∞e
−βT · Ew(X0,x,α

T ) ≥ 0, limT→∞e
−βT · Ew(X0,x,α̂(x)

T ) ≤ 0 (364)
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Example: Merton Problem with Consumption

Let’s consider the Merton problem in infinite time horizon t ∈ [0,∞). Now we have one riskless asset (say, bond)

with price P 0
t and one risky asset (say, stock) with price P 1

t at time t following the dynamics

dP 0
t = rP 0

t dt

P 0
0 = 1

dP 1
t = P 1

t · (µdt+ σ dBt)

P 1
0 = p

(365)

with r, µ, σ as constants and r < µ (nontrivial case). Now one would always invest αt of his total wealth into the

stock at time t and ct as consumption rate (integrates to the amount of consumption), investing all remaining wealth

into the bond. Denote Xt as his total wealth at time t, one would find that if one sticks to (αt, ct) from time t to

time t+ h for h→ 0+, an infinitesimal time increment, one would get

Xt+h = αtXt ·
P 1
t+h

P 1
t

+ (Xt − cth− αtXt) · erh (366)

wealth at time t + h (the consumption amount is cth since the length of the time interval is h). Now write it as a

SDE for Xt to get

dXt = αtXt
dP 1

t

P 1
t

+ (1− αt)rXt dt− ct dt (367)

and plug in the SDE for stock price to get

dXt = αtXt(µdt+ σ dBt) + (1− αt)rXt dt− ct dt (368)

dXt = (Xt[αtµ+ r(1− αt)]− ct) dt+ αtσXt dBt (369)

As a result, the control is a pair (αt, ct) ∈ A for A = R× [0,∞) (allow the shorting of stocks) and the admissible

set is A =
{
(αt, ct) : (0,∞) → A :

∫∞
0

|αt|2 + ct dt <∞ a.s., (αt, ct) = (αt(t,Xt), ct(t,Xt))
}

under the Markovian

setting. The integrability condition ensures that the SDE for Xt has unique strong solution. Now our goal is to

maximize the expected utility that depends on the consumption rate with given discount factor β > 0

E
[∫ ∞

0

e−βtU(ct) dt

]
(370)

for the CRRA (constant relative risk aversion) utility function U(x) = x1−γ

1−γ (γ ∈ (0, 1)), so the value function is

formed as

v(x) = sup
(α,c)∈A

E
[∫ ∞

0

e−βtU(ct) dt
∣∣∣X0 = x

]
(371)

55



Stochastic Control notes written by Haosheng Zhou CONTENTS

since we are in the infinite horizon case and the utility function is time-homogeneous.

By previous proved theorem, the HJBE is now

−βv(x) + sup
(α,c)∈A

{Lα,cv(x) + f(x, α, c)} = 0 (372)

plug in the expressions to findLα,cv(x) = (x[αµ+ r(1− α)]− c) · v′(x) + α2σ2x2

2 · v′′(x)

f(x, α, c) = U(c)
(373)

so the HJBE is given by

−βv + sup
(α,c)∈A

{
α2σ2x2

2
· v′′ + [x(αµ+ r − αr)− c] · v′ + U(c)

}
= 0 (374)

To solve this HJBE, of course let’s first get rid of the sup by solving an optimization problem w.r.t. (α, c) that

max
α,c

Q(x, α, c) =
α2σ2x2

2
· v′′ + [x(αµ+ r − αr)− c] · v′ + U(c) (375)

and compute the partials 
∂Q
∂α = xµv′ − xrv′ + σ2x2αv′′

∂Q
∂c = U ′(c)− v′

(376)

to solve out the optimal α∗, c∗ as the function of v′v′′α∗ = (r−µ)v′

σ2xv′′

c∗ = (U ′)−1(v′) = (v′)−
1
γ

(377)

and plug once again back into the HJBE to get the ODE

rxv′ − (µ− r)2(v′)2

2σ2v′′
− βv +

γ

1− γ
(v′)

γ−1
γ = 0 (378)

We try the ansatz that v(x) = κU(x) = κx1−γ

1−γ to get

κ =

(
β − r(1− γ)

γ
− (µ− r)2(1− γ)

2σ2γ2

)−γ

(379)
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so now the optimal control is given byα∗ = (r−µ)v′

σ2xv′′ = µ−r
γσ2

c∗ = (U ′)−1(v′) = (v′)−
1
γ =

(
β−r(1−γ)

γ − (µ−r)2(1−γ)
2σ2γ2

)
· x

(380)

the optimal choice is to always consume and invest in risky asset a fixed proportion of total wealth.

Verification of Merton Problem with Consumption

Now the calculation part comes to an end but there’s still some verification to do. As stated above, the first

thing to do is to verify the condition of the verification theorem. Now the solution we have found is

v(x) = κ
x1−γ

1− γ
(381)

so it’s in C2(R), satisfies the growth condition, α∗ = α∗(x), c∗ = c∗(x) exist and are well-defined, the condition

limT→∞e
−βT · Ev(X0,x,(α,c)

T ) ≥ 0 is satisfied due to non-negativity. Consider the SDEdXt = (Xt[α
∗
tµ+ r(1− α∗

t )]− c∗t ) dt+ α∗
tσXt dBt

X0 = x
(382)

then it’s easy to see that this is a geometric BM (by denoting c∗ = νx, so c∗t = νXt), so the solution exists and is

unique

X
0,x,(α∗,c∗)
T = x · e

[
α∗µ+r(1−α∗)−ν−σ2(α∗)2

2

]
T+α∗σBT

(383)

some calculations show

Ev
(
X

0,x,(α∗,c∗)
T

)
=

κ

1− γ
· E
(
X

0,x,(α∗,c∗)
T

)1−γ

(384)

= κ
x1−γ

1− γ
· e

[
α∗µ+r(1−α∗)−ν−σ2(α∗)2

2

]
(1−γ)T+

(α∗)2σ2(1−γ)2

2 T
(385)

= κ
x1−γ

1− γ
· e

(1−γ)

[
(µ−r)2

2γ2σ2 + r−β
γ

]
T

(386)

(387)

so

limT→∞e
−βT · Ev

(
X

0,x,(α∗,c∗)
T

)
= κ

x1−γ

1− γ
· limT→∞e

(
(1−γ)

[
(µ−r)2

2γ2σ2 + r−β
γ

]
−β

)
T

(388)
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in order to make sure that this expression is non-positive in order to make the verification theorem true, we have to

assume that β > (1 − γ)
[
(µ−r)2

2γ2σ2 + r−β
γ

]
and all previous calculations are correct under this assumption and the

solution to the HJBE must be the value function. Of course one can still check the admissibility of optimal control

and that the stochastic integral is actually a MG but since it’s trivial we neglect the procedure.
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Example: Production-Consumption Model

Consider the infinite horizon model for a firm with capital value Kt, invvestment rate It and stock price St per

unit of capital at time t. Assume that within the time interval [t, t+ h] (h→ 0+) the firm maintains its investment

rate It, so

Kt+h = Kt
St+h

St
+ hIt (389)

this gives the following SDE that

dKt = Kt
dSt

St
+ It dt (390)

Now the debt amount Lt of the firm is affected by the interest rate r, the consumption rate Ct and the

productivity rate Pt of capital. Consider an infinitesimal time increment h→ 0+ to get

Lt+h = Lt · erh + hCt + hIt − (Pt+h − Pt)
Kt

St
(391)

described by the following SDE that

dLt = rLt dt+ (Ct + It) dt−
Kt

St
dPt (392)

The dynamics of stock price St and productivity rate of capital Pt are known by

dSt

St
= µdt+ σ1 dB

1
t (393)

dPt = b dt+ σ2 dB
2
t (394)

where Bt = (B1
t , B

2
t ) is 2-dimensional BM. For the convenience of notation, set Yt = logSt and apply Ito formula to

see

dYt =

(
µ− σ2

1

2

)
dt+ σ1 dB

1
t (395)

we will use the dynamic of Yt instead of St in the following context. The firm has net value

Xt = Kt − Lt (396)

and we want to select the control variables kt =
Kt

Xt
, ct =

Ct

Xt
, the percentage of net value to invest and consume

such that the net value of the company is maximized.

Since Xt, Yt are observable states, we want to get the SDE system that describes the evolution of the states
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under the control variablesdXt = Xt[kt(µ− r + be−Yt) + r − ct] dt+ σ1ktXt dB
1
t + σ2ktXte

−Yt dB2
t

dYt =
(
µ− σ2

1

2

)
dt+ σ1 dB

1
t

(397)

note that this system contains only process Xt, Yt except the control variables. Note that we can replace Lt by

Lt = Kt −Xt = (kt − 1)Xt. For infinite horizon problems, we always need a discount factor β > 0 and we still select

the CRRA utility function U(x) = x1−γ

1−γ γ ∈ (0, 1) that turns the consumption rate Ct = ctXt into the utility. So

now the expected utility following control k, c on observing state x, y is

J(x, y, k, c) = E
[∫ ∞

0

e−βtU(ctX
0,x,y,k,c
t ) dt

]
(398)

where X0,x,y,k,c
t denotes process Xt as the solution to the SDE system above with initial value condition X0 = x, Y0 =

y. Note that the value of Yt affects the dynamics of Xt, that’s why we have to include y in the superscript. On

the other hand, since the dynamics of Yt does not depend on Xt, Y
0,y,k,c
t is enough for notation purpose.

For the admissible set of control, we still accept the Markovian setting with integrability conditions

∀(k, c) ∈ A ,∀T > 0,

∫ T

0

k2t + c2t dt <∞ a.s.,E
[∫ ∞

0

e−βtU(ctX
0,x,y,k,c
t ) dt

]
<∞, kt, ct ≥ 0 (399)

so the value function is formed as

v(x, y) = sup
(k,c)∈A

E
[∫ ∞

0

e−βtU(ctX
0,x,y,k,c
t ) dt

]
(400)

Let’s then write out the HJBE of the value function

−βv(x, y) + sup
(k,c)∈A

{
L(k,c)v(x, y) + U(cx)

}
= 0 (401)

with infinitesimal generator as

L(k,c)v(x, y) = CDrift · ∇v +
1

2
tr(CDiffC

T
Diff∇2v) (402)

where CDrift is the drift coefficient and CDiff is the diffusion coefficient. In this case, CDrift ∈ R2, CDiff ∈ R2×2

and

CDrift =

[
x[k(µ− r + be−y) + r − c]

µ− σ2
1

2

]
(403)

CDiff =

[
σ1kx σ2kxe

−y

σ1 0

]
(404)
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so by doing some calculations, we figure out that

L(k,c)v(x, y) = x[k(µ− r + be−y) + r − c] · ∂xv(x, y) +
(
µ− σ2

1

2

)
· ∂yv(x, y) (405)

+
σ2
1k

2x2 + σ2
2k

2x2e−2y

2
· ∂xxv(x, y) + σ2

1kx · ∂xyv(x, y) +
σ2
1

2
· ∂yyv(x, y) (406)

so the HJBE is written in the simpler form with the sup w.r.t. k and c torn apart

β · v −
(
µ− σ2

1

2

)
· ∂yv − rx · ∂xv −

σ2
1

2
· ∂yyv − sup

c≥0
{U(cx)− cx · ∂xv} (407)

− sup
k≥0

{
xk(µ− r + be−y) · ∂xv +

σ2
1k

2x2 + σ2
2k

2x2e−2y

2
· ∂xxv + σ2

1kx · ∂xyv
}

= 0 (408)

Note that the SDE for Xt has the form that dXt

Xt
does not contain Xt any longer, so if Yt is known this is just

a Black-Scholes model and we would expect to see the solution as X0,x,y,k,c
t = x · eZ(Y 0,y,k,c

t ,k,c) for some function

Z. That’s why we say that v(x, y) = x1−γv(1, y) from the expression of the value function and the CRRA utility

function. As a result, we try the ansatz v(x, y) = x1−γ

1−γ e
ϕ(y). Now let’s first get rid of the sup in the HJBE

max
c
U(cx)− cx · ∂xv (409)

c∗ = (∂xv)
− 1

γ · 1
x

(410)

max
k

xk(µ− r + be−y) · ∂xv +
σ2
1k

2x2 + σ2
2k

2x2e−2y

2
· ∂xxv + σ2

1kx · ∂xyv (411)

k∗ = max

{
0,−σ

2
1x · ∂xyv + x(µ− r + be−y) · ∂xv

(σ2
1x

2 + σ2
2x

2e−2y) · ∂xxv

}
(412)

and plug in our ansatz to know c∗ = e−
ϕ(y)
γ

k∗ = max
{
0,

σ2
1ϕ

′(y)+µ−r+be−y

γ(σ2
1+σ2

2e
−2y)

} (413)

the next step is to solve ϕ(y). HJBE now becomes

β −
(
µ− σ2

1

2

)
ϕ′(y)− r(1− γ)− σ2

1

2
[(ϕ′(y))2 + ϕ′′(y)]− sup

c≥0

{
c1−γe−ϕ(y) − c(1− γ)

}
(414)

− (1− γ) sup
k≥0

{
k(µ− r + be−y + σ2

1ϕ
′(y))− γk2

2
(σ2

1 + e−2yσ2
2)

}
= 0 (415)

it’s hard to solve this ODE for ϕ(y), but we can argue that this ODE has unique C2 bounded solution ϕ(y) for

large enough β and the following analysis will be conducted without knowing the form of ϕ(y).
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Verification of Production-Consumption Model

Now let’s prove that verification theorem holds for this problem so the solution to HJBE is exactly the value

function. However, the difficulty is that we have to conduct analysis without knowing the form of ϕ(y). Firstly,

the solution v(x, y) = x1−γ

1−γ e
ϕ(y) is C2 since ϕ ∈ C2. We have derived the optimal control c∗, k∗ and they are well-

defined functions for each fixed pair (x, y) and the condition limT→∞e
−βT · Ev(X0,x,y,k,c

T , Y 0,y,k,c
T ) ≥ 0 is naturally

satisfied due to non-negativity of v on R+ ×R. Now it’s also obvious that the growth condition is satisfies since v is

of order x1−γ in x and bounded in y. The only conditions to verify are limT→∞e
−βT ·Ev(X0,x,y,k∗,c∗

T , Y 0,y,k∗,c∗

T ) ≤ 0

and the admissibility.

Note that the optimal control is given byc∗t = e−
ϕ(Yt)

γ

k∗t = max
{
0,

σ2
1ϕ

′(Yt)+µ−r+be−Yt

γ(σ2
1+σ2

2e
−2Yt )

} (416)

only has something to do with the observation of Yt, so it satisfies the measurability condition and

∀T > 0,

∫ T

0

(k∗t )
2 + (c∗t )

2 dt <∞ a.s. (417)

on the other hand, notice that if y is the critical point of ϕ′, then ϕ′′(y) = 0 so

β −
(
µ− σ2

1

2

)
ϕ′(y)− r(1− γ)− σ2

1

2
[ϕ′(y)]2 − sup

c≥0

{
c1−γe−ϕ(y) − c(1− γ)

}
(418)

− (1− γ) sup
k≥0

{
k(µ− r + be−y + σ2

1ϕ
′(y))− γk2

2
(σ2

1 + e−2yσ2
2)

}
= 0 (419)

β −
(
µ− σ2

1

2

)
ϕ′(y)− r(1− γ)− σ2

1

2
[ϕ′(y)]2 − sup

c≥0

{
c1−γe−ϕ(y) − c(1− γ)

}
≥ 0 (420)

β −
(
µ− σ2

1

2

)
ϕ′(y)− r(1− γ)− σ2

1

2
[ϕ′(y)]2 − (1− γ)e

γ
γ−1ϕ(y) ≥ 0 (421)

we have proved that ϕ′ is also bounded, so now c∗t , k
∗
t , k

∗
t e

−Yt are all bounded. Let’s look back at the dynamics of

Xt that

dXt

Xt
= [kt(µ− r + be−Yt) + r − ct] dt+ σ1kt dB

1
t + σ2kte

−Yt dB2
t (422)

all coefficients are bounded, so the expectation of Xt given optimal control must be dominated by the expectation

of some geometric BM (if all coefficients are constant, this is just BS model), i.e.

∃M > 0,∀t > 0,E(X0,x,y,k∗,c∗

t )2 ≤ x2 · eMt (423)
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the result is that

E
[∫ ∞

0

e−βtU(ctX
0,x,y,k∗,c∗

t ) dt

]
≤ C ·

∫ ∞

0

e−βt · E
[
(X0,x,y,k∗,c∗

t )2
]
dt (424)

≤ Cx2 ·
∫ ∞

0

e(M−β)t dt <∞ (if β > M) (425)

we have proved that the optimal control also satisfies the integrability conditions, so k∗, c∗ are admissible optimal

controls for large enough β.

Let’s consider the last condition

limT→∞e
−βT · Ev(X0,x,y,k∗,c∗

T , Y 0,y,k∗,c∗

T ) ≤ C · limT→∞e
−βT · E[X0,x,y,k∗,c∗

T ]1−γ (426)

≤ C · limT→∞e
−βT · E[X0,x,y,k∗,c∗

T ]2 (427)

≤ Cx2 · limT→∞e
(M−β)T (428)

= 0 (if β > M) (429)

To conclude, when β is large enough (larger than a fixed constant M that appears in the exponential of the

expectation of a geometric BM that dominates E(X0,x,y,k∗,c∗

t )2), the verification theorem holds and the production-

consumption model is solved, with c∗t = c∗t (Yt), k
∗
t = k∗t (Yt) as optimal Markovian controls.

Remark. In this example, we will have to put up an ansatz, use ODE techniques to prove the property of the solution

without solving the ODE, and prove that the conditions of verification theorem hold with some tricks. This is the

general frame of the PDE approach to stochastic control problem, where we cannot solve out the optimal control and

the HJBE directly.
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Backward Stochastic Differential Equation (BSDE)

In order to introduce the BSDE approach to stochastic control problems, let’s first start by introducing some

notations and restating the existence and uniqueness of the strong solution to SDE.

Let H0,k denote the collection of all progressively measurable process that takes values in Rk, the Hilbert space

the solutions are living in is denoted as

H2,k =

{
Z ∈ H0,k : E

∫ T

0

||Zs||2 ds <∞

}
(430)

where the time horizon is always finite in [0, T ] for a large enough fixed constant T . Our interest lies in

the strong solution to the SDE that looks like

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (431)

where Xt, b(t,Xt) takes values in Rd and σ(t,Xt) takes values in Rd×m, with Bt = (B1
t , ..., B

m
t ) as an m-dimensional

BM. By mentioning the strong solution, we define that Xt is a strong solution if (i): it satisfies the SDE above

(ii): it also satisfies the integrability condition that∫ T

0

||b(t,Xt)||+ ||σ(t,Xt)||2 dt <∞ a.s. (432)

Existence and Uniqueness of Strong Solution

In the stochastic calculus notes we have proved the existence and uniqueness of the strong solution to such SDE

under growth condition and Lipschitz condition with the Picard iteration technique. However, here we apply some

different assumptions and also derive some moment estimates on the solution with some difference techniques. In

the following context, it’s always assumed that ∀x ∈ Rd, {b(t, x)}t∈[0,T ] ∈ L2([0, T ]), {σ(t, x)}t∈[0,T ] ∈ L2([0, T ])

and b, σ are both Lipschitz in variable x.

Theorem 17. (Existence and Uniqueness of Strong Solution) Assume that X0 ∈ L2 is independent of the

BM Bt and b, σ satisfies the assumptions above, then there exists a unique solution of SDE in H2,d such that for

some constant C = C(T, Lips(b), Lips(σ)) > 0,

E sup
t∈[0,T ]

||Xt||2 ≤ C(1 + E||X0||2)eCT (433)

Proof. Instead of constructing the Picard iteration sequence, let’s form the solution to the SDE as a fixed point and

apply the contraction mapping theorem. Set the mapping U : H2,d → H2,d as

U(X)t = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs (434)

so Xt is the solution to the SDE if and only if X = U(X), i.e. X is the fixed point of U . Now we only have to
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prove that U is a contraction mapping under the Hilbert space norm induced by the inner product ⟨X,Y ⟩H2,d =

E
∫ T

0
Xt · Yt dt (∀X,Y ∈ H2,d).

However, the first problem we have to face is that we don’t know if U(X) is necessarily in H2,d, so we have to

estimate ||U(X)||2.

||U(X)||2 = E
∫ T

0

||U(X)t||2 dt (435)

≤ 3

∫ T

0

E||X0||2 dt+ 3E
∫ T

0

||
∫ t

0

b(s,Xs) ds||2 dt+ 3E
∫ T

0

||
∫ t

0

σ(s,Xs) dBs||2 dt (436)

the first term is obviously finite since X0 ∈ L2. To estimate the other two terms, we have to use the Lipschitz property

in the way that
∣∣∣||b(t, x)|| − ||b(t, 0)||

∣∣∣ ≤ ||b(t, x)− b(t, 0)|| ≤ Lips(b) · ||x|| so ||b(t, x)||2 ≤ C(1+ ||b(t, 0)||2 + ||x||2) for
some constant C = C(T, Lips(b), Lips(σ)) > 0 and the same argument holds for σ. That’s why we have

E
∫ T

0

||
∫ t

0

b(s,Xs) ds||2 dt ≤ E
∫ T

0

t ·
∫ t

0

||b(s,Xs)||2 ds dt (437)

≤ CT · E
∫ T

0

∫ t

0

(1 + ||b(s, 0)||2 + ||Xs||2) ds dt (438)

≤ CT 2 ·
∫ T

0

(1 + ||b(s, 0)||2 + E||Xs||2) ds (439)

≤ CT 3 ·

(
1 + ||b(·, 0)||2 + sup

s∈[0,T ]

E||Xs||2
)

(440)

by Cauchy inequality and ||b(·, 0)||2 <∞ since ∀x ∈ Rd, {b(t, x)}t∈[0,T ] ∈ L2([0, T ]). Similarly, for the third term,

E
∫ T

0

||
∫ t

0

σ(s,Xs) dBs||2 dt ≤ T · E sup
t∈[0,T ]

||
∫ t

0

σ(s,Xs) dBs||2 (441)

≤ 4T · E||
∫ T

0

σ(s,Xs) dBs||2 (442)

≤ 4T · E
∫ T

0

||σ(s,Xs)||2 ds (443)

≤ 4CT 2 ·

(
1 + ||σ(·, 0)||2 + sup

s∈[0,T ]

E||Xs||2
)

(444)

by Doob’s Lp inequality. Since X ∈ H2,d, sups∈[0,T ] E||Xs||2 <∞ and it’s proved that the image of U is still in H2,d.

To prove the contraction mapping property, let’s first introduce another norm on H2,d as

||X||2α = E
∫ T

0

e−αt||Xt||2 dt (α > 0) (445)
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which is actually equivalent to the original norm (when α = 0). Under this norm, consider

||U(X)− U(Y )||2α = E
∫ T

0

e−αt||U(X)t − U(Y )t||2 dt (446)

=

∫ T

0

e−αtE||U(X)t − U(Y )t||2 dt (447)

≤ 2

∫ T

0

e−αt ·
[
E||
∫ t

0

b(s,Xs)− b(s, Ys) ds||2 + E||
∫ t

0

σ(s,Xs)− σ(s, Ys) dBs||2
]
dt (448)

≤ 2

∫ T

0

e−αt ·
[
t · E

∫ t

0

||b(s,Xs)− b(s, Ys)||2 ds+ E
∫ t

0

||σ(s,Xs)− σ(s, Ys)||2 ds
]
dt (449)

≤ C

∫ T

0

e−αt ·
∫ t

0

E||Xs − Ys||2 ds dt (450)

= C

∫ T

0

E||Xs − Ys||2 ·
∫ T

s

e−αt dt ds (451)

≤ C

α
||X − Y ||2α (452)

so if α is large enough, C
α < 1 for some constant C that only depends on T, Lips(b), Lips(σ), the mapping U is

a strict contraction mapping (since for any α ≥ 0, the norms are equivalent). This proved the existence and the

uniqueness of the solution immediately by contraction mapping theorem.

For the moment estimate of the solution,

∀t ∈ [0, T ],E sup
s∈[0,t]

||Xs||2 = E sup
s∈[0,t]

||X0 +

∫ s

0

b(r,Xr) dr +

∫ s

0

σ(r,Xr) dBr||2 (453)

≤ 3E||X0||2 + 3E sup
s∈[0,t]

||
∫ s

0

b(r,Xr) dr||2 + 3E sup
s∈[0,t]

||
∫ s

0

σ(r,Xr) dBr||2 (454)

≤ 3E||X0||2 + 3t · E
∫ t

0

||b(r,Xr)||2 dr + 12

∫ t

0

E||σ(r,Xr)||2 dr (455)

≤ C ·

(
1 + E||X0||2 +

∫ t

0

E sup
p∈[0,r]

||Xp||2 dr

)
(456)

with Doob’s Lp inequality applied once more. Now notice that by denoting f(t) = E sups∈[0,t] ||Xs||2, we have that

f(t) ≤ C ·
(
1 + E||X0||2 +

∫ t

0
f(r) dr

)
, Grownwall’s inequality proves the conclusion that

∀t ∈ [0, T ],E sup
s∈[0,t]

||Xs||2 ≤ C(1 + E||X0||2)eCt (457)

Remark. From the uniqueness argument in the contraction mapping theorem, if two processes Xt, Yt are both solu-

tions to the same SDE, then ||Xt − Yt||H2,d = 0, so Xt = Yt a.a.(t, ω) ∈ [0,∞) × Ω, this is a little bit weaker than

the uniqueness in the sense of modification.
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Remark. The norm equivalency argument is a useful trick for finite time-horizon processes. It’s not hard to verify

that || · ||α is actually a norm on H2,d and that

e−αT ||X||2H2,d ≤ ||X||2α ≤ ||X||2H2,d (458)

however, the freedom in choosing α ensures that there exists a contraction mapping with the contraction coefficient
C
α < 1.
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Settings of BSDE

BSDE is a special kind of SDE for which the terminal condition is given as a certain random variable so the

evolution shall actually proceed backwardly. The BSDE consists of a driver (coefficient) Ψ : [0, T ]×Ω×Rp×Rpm →
Rp such that ∀(y, z) ∈ Rp×Rpm, {Ψ(t, y, z)}t∈[0,T ] is P measurable for the sigma field P on [0, T ]×Ω generated by

{Ft}t∈[0,T ] measurable bounded process. The filtration {Ft}t∈[0,T ] is that of the m-dimensional BM Bt by default.

The BSDE also has a known terminal condition ξ ∈ L2. The BSDE for Yt, Zt is always formed as−dYt = Ψ(t, Yt, Zt) dt− Zt dBt

YT = ξ
(459)

and is denoted BSDE(Ψ, ξ).

The solution to such BSDE is defined as a pair of process (Y,Z) such that it satisfies the BSDE

Yt = ξ +

∫ T

t

Ψ(s, Ys, Zs) ds−
∫ T

t

Zs dBs (460)

with some regularity conditions that

Y ∈ S2,p, Z ∈ H2,pm (461)

where H2,pm stands for the Hilbert space of process taking values in Rpm defined above and

S2,p =

{
Y ∈ H0,p : E sup

t∈[0,T ]

||Yt||2 <∞

}
(462)

Remark. Let’s briefly talk about the motivation of BSDE. One might be confused with the reason why there is a

pair of processes appearing in the BSDE instead of a single process which is the case for forward SDE. Actually, the

motivation comes from the generalization of the Feynman-Kac formula.

Recall that the Feynman-Kac formula provides the probabilistic characterization of the solution to the PDE.

However, the most general case to deal with is the linear parabolic PDE that looks like

∂tu+ Lu+ fu+ g = 0 (463)

for some nice enough f, g, the infinitesimal generator L and a given terminal condition (note that Feynman-Kac

formula deals with a PDE with given terminal condition).

Now we hope to find the probabilistic characterization for the solution to semilinear parabolic PDE that looks

like

∂tu+ Lu+Ψ(t, x, u, ∂xu) = 0 (464)
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and we hope to connect the solution u (assume it exists) with the Ito diffusion Xt generated by the dynamics

dXt = b(Xt) dt+ σ(Xt) dBt (465)

whose infinitesimal generator is exactly L and has a given initial value condition. Recall how we connect solution to

PDE with diffusion, we shall perturb the initial value condition of the diffusion and derive a PDE. That’s why we

first assume that Xt,x denotes the Ito diffusion generated by given initial condition Xt = x and Y t,x
s = u(s,Xt,x

s ).

By Ito formula,

u(t+ h,Xt,x
t+h) = u(t, x) +

∫ t+h

t

(∂t + L)u(s,Xt,x
s ) ds+

∫ t+h

t

∂xu(s,X
t,x
s )σ(Xt,x

s ) dBs (466)

so the dynamics of Y is

dYt = (∂t + L)u(t,Xt) dt+ ∂xu(t,Xt)σ(Xt) dBt (467)

= −Ψ(t,Xt, u(t,Xt), ∂xu(t,Xt)) dt+ ∂xu(t,Xt)σ(Xt) dBt (468)

As a result, if we slightly modify the components of Ψ into Ψ(t,Xt, u(t,Xt), ∂xu(t,Xt)σ(Xt)), i.e. such Ψ =

Ψ(t, x, u, ∂xu · σ(x)) depends on ∂xu in the way that it only depends on the product ∂xu · σ(x). Then by settingYt = u(t,Xt)

Zt = ∂xu(t,Xt)σ(Xt)
(469)

we see the form of the BSDE that

dYt = −Ψ(t,Xt, Yt, Zt) dt+ Zt dBt (470)

which explains why the BSDE we consider has such a form. We will see exactly this form again in the following

nonlinear Feynman-Kac formula.
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Existence and Uniqueness of the Solution to BSDE

Now let’s assume that Ψ(t, y, z) is Lipschitz in (y, z) and {Ψ(t, 0, 0)}t∈[0,T ] ∈ H2,p, and these assumptions

suffice to ensure the existence and uniqueness of the solution to BSDE by a similar fixed point argument.

Theorem 18. (Existence and Uniqueness of Solution to BSDE) Under the assumption above, the BSDE−dYt = Ψ(t, Yt, Zt) dt− Zt dBt

YT = ξ
(471)

has unique solution.

Proof. Define the operator U : S2,p ×H2,pm → S2,p ×H2,pm such that it maps (Y,Z) to (Ỹ , Z̃) in a way that

Ỹt = ξ +

∫ T

t

Ψ(s, Ys, Zs) ds−
∫ T

t

Z̃s dBs (472)

note that this construction provides Ỹ , Z̃ simultaneously. Consider the L2 MG

Mt = E

[
ξ +

∫ T

0

Ψ(s, Ys, Zs) ds
∣∣∣Ft

]
(473)

and apply the MG representation theorem to find that there exists unique Z̃ ∈ H2,pm such that

Mt =M0 +

∫ t

0

Z̃s dBs (474)

as a result, set

Ỹt = E

[
ξ +

∫ T

t

Ψ(s, Ys, Zs) ds
∣∣∣Ft

]
=Mt −

∫ t

0

Ψ(s, Ys, Zs) ds (475)

to find that ỸT = ξ and

dỸt = dMt −Ψ(t, Yt, Zt) dt = Z̃t dBt −Ψ(t, Yt, Zt) dt (476)

so the mapping U is well-defined. The fixed point of U is just the solution to the BSDE. Before verifying the

contraction mapping property, let’s first verify that the image of U is in the space S2,p × H2,pm. Note that by MG
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representation theorem, we have already proved that Z̃ ∈ H2,pm, so we shall estimate the moment of Ỹ

E sup
t∈[0,T ]

||Ỹt||2 ≤ C

[
E||ξ||2 + E sup

t∈[0,T ]

||
∫ T

t

Ψ(s, Ys, Zs) ds||2 + E sup
t∈[0,T ]

||
∫ T

t

Z̃s dBs||2
]

(477)

≤ C

[
E||ξ||2 + T · E

∫ T

0

||Ψ(s, Ys, Zs)||2 ds+ E||
∫ T

0

Z̃s dBs||2 + E sup
t∈[0,T ]

||
∫ t

0

Z̃s dBs||2
]

(478)

≤ C

[
E||ξ||2 + E

∫ T

0

||Ψ(s, 0, 0)||2 ds+ E
∫ T

0

||Ys||2 ds+ E
∫ T

0

||Zs||2 ds+ E
∫ T

0

||Z̃s||2 ds

]
(479)

<∞ (480)

by Doob’s Lp inequality, Ito’s isometry and the Lipschitz assumption for some constant C = C(T, Lips(Ψ)) > 0. As

a result, Ỹ ∈ S2,p and we only need to verify the contraction mapping property.

Recall the trick applied in previous proof for forward SDE that we have introduced a family of equivalent norms

with the freedom to choose the parameter in the norm in order to ensure that the contraction coefficient is always

strictly less than 1. Apply the same trick here to define the norm

||(Y, Z)||2α = E
∫ T

0

eαt · (||Yt||2 + ||Zt||2) dt (481)

and notice that this family of norm is equivalent for α ≥ 0 and when α = 0 we get the canonical norm on the product

of two Hilbert spaces H2,p ×H2,pm. Eventually we can see that ∀(Y 1, Z1), (Y 2, Z2) ∈ H2,p ×H2,pm

||U(Y 1, Z1)− U(Y 2, Z2)||2α ≤ 2c2(T + 1)

α
||(Y 1, Z1)− (Y 2, Z2)||2α (482)

so we can take α to be large enough such that 2c2(T+1)
α < 1 and the theorem is proved (calculations are ommitted

here).

Remark. The Burkholder-Davis-Gundy (BDG) inequality is an important tool in continuous-time stochastic

analysis. It asserts that for ∀p > 0, any continuous local MG M with M0 = 0 and any stopping time τ , there always

exists c = c(p), C = C(p) such that

c · E⟨M,M⟩
p
2
τ ≤ E sup

0≤t≤τ
|Mt|p ≤ C · E⟨M,M⟩

p
2
τ (483)

it enables us to deal with the expectation of the sup of stochastic integral since the expectation of the quadratic

variation of stochastic integral is always easy to deal with. One will have to use BDG inequality in the calculations

above to get rid of a local MG after taking expectation.
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Example: Trivial Driver

Let’s consider the trivial case where Ψ = 0 so dYt = Zt dBt. In other words, the stochastic integral of Z w.r.t.

BM gives Y and now we are given the terminal value of Y . This makes us recall the MG representation theorem

since Z very much looks like the process whose stochastic intergal generates the MG.

Consider the L2 MG

Mt = E(ξ|Ft) (484)

so MG representation theorem concludes that there exists unique Z ∈ H2,pm such that Mt = M0 +
∫ t

0
Zs dBs =

Eξ +
∫ t

0
Zs dBs. Now set

Yt =Mt (485)

to see that YT = ξ, dYt = dMt = Zt dBt, so (Y,Z) is the solution pair. The existence and uniqueness of the solution

guarantees that this is the only solution to such BSDE.

Remark. This BSDE dYt = Zt dBt makes no sense when an initial value condition is given, let’s say, Y0 = 0 since

we immediately know that

Yt =

∫ t

0

Zs dBs (486)

and there are infinitely many solutions. For each selection of Z there always exists a Y such that this SDE holds. This

example illustrates the difference between forward SDE and BSDE. BSDE is always related to MG representation

theorem since the solution is a pair of processes and one of them often has to be fixed first by MG representation.

Example: Linear BSDE

The majority of BSDEs cannot be solved. However, we can consider a special type of BSDE where the driver

is linear in y, z. We write the linear BSDE in the following form−dYt = (PtYt +Qt · Zt +Rt) dt− Zt dBt

YT = ξ
(487)

assuming p = 1 so this BSDE is in 1-dimension with Pt ∈ R, Qt ∈ Rm bounded. It’s easy to verify that such BSDE

satisfies the conditions listed in the theorem above so it has unique solution.

Theorem 19. (Solution to Linear BSDE) The solution to linear BSDE is given by

ΓtYt = E

[
ΓT ξ +

∫ T

t

ΓsRs ds
∣∣∣Ft

]
(488)
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where Γ is the adjoint process given by dΓt = Γt(Pt dt+Qt dBt)

Γ0 = 1
(489)

Proof. Since we already have existence and uniqueness of the solution, just need to construct the appropriate Zt and

show that the Yt given makes (Y, Z) a solution pair.

Notice that ΓTYT = ξΓT so the terminal condition satisfies. By Ito formula, −dYt = (PtYt +Qt · Zt +Rt) dt−
Zt dBt holds if and only if

d(ΓtYt) = Γt dYt + Yt dΓt + d⟨Y,Γ⟩t (490)

= −ΓtRt dt+ Γt(Zt + YtQt) dBt (491)

ΓtYt − Y0 = −
∫ t

0

ΓsRs ds+

∫ t

0

Γs(Zs + YsQs) dBs (492)

to notice that the stochastic integral is actually a MG we shall calculate

E
〈∫ ·

0

Γs(Zs + YsQs) dBs,

∫ ·

0

Γs(Zs + YsQs) dBs

〉
T

= E
∫ T

0

Γ2
s||Zs + YsQs||2 ds <∞ (493)

since Q is bounded, E supt∈[0,T ] Γ
2
t < ∞ (since Pt, Qt are both bounded) and that Y ∈ S2,1, Z ∈ H2,m. By BDG

inequality, this tells us that

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

Γs(Zs + YsQs) dBs

∣∣∣∣ ≤ C · E

[∫ T

0

Γ2
s||Zs + YsQs||2 ds

] 1
2

<∞ (494)

for some constant independent of T . The stochastic integral is a U.I. MG (the sup of local MG is integrable, satisfies

the dominated condition). As a result, U.I. MG has to be closed

ΓtYt +

∫ t

0

ΓsRs ds = E

[
ΓTYT +

∫ T

0

ΓsRs ds
∣∣∣Ft

]
= E

[
ΓT ξ +

∫ T

0

ΓsRs ds
∣∣∣Ft

]
(495)

To let the BSDE hold for such Y , we only need to choose an appropriate Z ∈ H2,m such that

Y0 +

∫ t

0

Γs(Zs + YsQs) dBs = E

[
ΓT ξ +

∫ T

0

ΓsRs ds
∣∣∣Ft

]
(496)

whose existence is guaranteed by the MG representation theorem!
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Comparison Principles

Although general BSDE is very hard to solve, a comparison principle enables us to describe the property of the

solution to BSDE without explicitly solving it. The comparison principle focuses on the comparison of the driver

and the terminal conditions with few restrictions to apply.

Theorem 20. (Comparison Principles of BSDE) (Ψ1, ξ1), (Ψ2, ξ2) are two sets of drivers and terminal con-

ditions for a BSDE with (Y 1, Z1), (Y 2, Z2) as corresponding solution pairs. If now BSDE(Ψ2, ξ2) satisfies the

existence and uniqueness condition for the solution and ξ1 ≤ ξ2 a.s., Ψ1(t, Y 1
t , Z

1
t ) ≤ Ψ2(t, Y 1

t , Z
1
t ) a.a.(t, ω) and

Ψ2(t, Y 1
t , Z

1
t ) ∈ H2,p, then

a.s. ∀t ∈ [0, T ], Y 1
t ≤ Y 2

t (497)

In particular, if Y 2
0 ≤ Y 1

0 , then a.s. ∀t ∈ [0, T ], Y 1
t = Y 2

t .

Proof. Only prove for p = 1. Consider the difference (P,Q) = (Y 2 − Y 1, Z2 − Z1), it satisfies−dPt = [−Ψ1(t, Y 1
t , Z

1
t ) + Ψ2(t, Y 2

t , Z
2
t )] dt−Qt dBt

PT = ξ2 − ξ1
(498)

rewrite the BSDE as a linear BSDE for (P,Q)

−dPt = [−Ψ1(t, Y 1
t , Z

1
t ) + Ψ2(t, Y 2

t , Z
2
t )] dt−Qt dBt (499)

=
(
[Ψ2(t, Y 1

t , Z
1
t )−Ψ1(t, Y 1

t , Z
1
t )] + [Ψ2(y, Y 2

t , Z
2
t )−Ψ2(y, Y 1

t , Z
2
t )] (500)

+ [Ψ2(y, Y 1
t , Z

2
t )−Ψ2(y, Y 1

t , Z
1
t )]
)
dt−Qt dBt (501)

=
(
[Ψ2(t, Y 1

t , Z
1
t )−Ψ1(t, Y 1

t , Z
1
t )] +

Ψ2(y, Y 2
t , Z

2
t )−Ψ2(y, Y 1

t , Z
2
t )

Y 2
t − Y 1

t

IY 2
t ̸=Y 1

t
Pt (502)

+
Ψ2(y, Y 1

t , Z
2
t )−Ψ2(y, Y 1

t , Z
1
t )

Z2
t − Z1

t

IZ2
t ̸=Z1

t
Qt

)
dt−Qt dBt (503)

let’s denote the coefficients as 
αt = Ψ2(t, Y 1

t , Z
1
t )−Ψ1(t, Y 1

t , Z
1
t )

βt =
Ψ2(y,Y 2

t ,Z2
t )−Ψ2(y,Y 1

t ,Z2
t )

Y 2
t −Y 1

t
IY 2

t ̸=Y 1
t

γt =
Ψ2(y,Y 1

t ,Z2
t )−Ψ2(y,Y 1

t ,Z1
t )

Z2
t −Z1

t
IZ2

t ̸=Z1
t

(504)

to find that βt, γt are both bounded since Ψ2(t, y, z) is Lipschitz in (y, z) and that αt ∈ H2,1 so−dPt = [βtPt + γtQt + αt] dt−Qt dBt

PT = ξ2 − ξ1
(505)
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is now a linear BSDE. By the previous theorem, the unique solution should be given by

ΓtPt = E

[
ΓT (ξ

2 − ξ1) +

∫ T

t

Γsαs ds
∣∣∣Ft

]
(506)

where Γt is the adjoint process such that dΓt = Γt(βt dt+ γt dBt)

Γ0 = 1
(507)

since βt, γt are both bounded, Γt is strictly positive and the condition tells us that almost surely ξ2 − ξ1, αt are both

non-negative. As a result, we conclude that almost surely Pt has to be non-negative, which proves the theorem.

Moreover, when Y 2
0 ≤ Y 1

0 , P0 ≤ 0 so P0 = 0, which tells us that

E

[
ΓT (ξ

2 − ξ1) +

∫ T

0

Γsαs ds

]
= 0 (508)

so a.s. ξ2 − ξ1 = 0,∀t ∈ [0, T ], αt = 0 and ∀t ∈ [0, T ], Pt = 0, Y 1
t = Y 2

t .

Remark. Note that the comparison principle is just an application of the solution to linear BSDE. The interesting

point is that there’s no requirement on the regularity of (Ψ1, ξ1). As a corollary, if P
(
ξ1 < ξ2

)
> 0 or

Ψ1 < Ψ2 on a positive measure set under dt× dP, then Y 1
0 < Y 2

0 gives a strict inequality for the initial

values of Y .

Example

By taking Ψ1 = 0, ξ1 = 0, it’s obvious that the solution to BSDE(Ψ1, ξ1) is trivial Y 1
t = 0, Z1

t = 0.

Apply the comparison principle to find out that if ξ2 ≥ ξ1 = 0 a.s.,Ψ2(t, 0, 0) ≥ Ψ1(t, 0, 0) = 0 a.a.(t, ω), then

a.s. ∀t ∈ [0, T ], Y 2
t ≥ Y 1

t = 0 (509)

telling us that if a BSDE has terminal condition almost surely non-negative and driver non-negative for

almost all time and at (y, z) = (0, 0), then the solution must be non-negative. In particular, if P (ξ > 0) > 0

or Ψ2(t, 0, 0) > 0 a.a.(t, ω) then Y0 > 0.
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Stochastic Control Problem, BSDE Approach

BSDE and Value Function

Let’s first consider the connection between the solution to BSDE and the value function. In stochastic control

problems, the dynamics will be determined by a control parameter α so let’s first consider the optimization of a

family of BSDE. In the following context, the sup and inf taken for random variables are naturally specified as

essential sup and inf (ignoring the zero measure set) and all BSDEs appearing satisfies the existence and

uniqueness condition. We will be considering the minimization problem and the dynamics is given by BSDE as−dYt = fα(t, Yt, Zt) dt− Zt dBt

YT = ξα
(510)

where both the driver and the terminal condition depend on the control α in the admissible set A .

Theorem 21. (Optimization of a Family of BSDE) Let (f, ξ), (fα, ξα) be a family of driver-terminal condition

pairs for α ∈ A and (Y,Z), (Y α, Zα) be the corresponding solution pairs. Suppose that ∃α̂ ∈ A such that

f(t, Yt, Zt) = inf
α
fα(t, Yt, Zt) = f α̂(t, Yt, Zt) a.a.(t, ω) (511)

ξ = inf
α
ξα = ξα̂ a.s. (512)

then

a.s. ∀t ∈ [0, T ], Yt = inf
α
Y α
t = Y α̂

t (513)

Proof. By the comparison principles, for ∀α ∈ A , ξ ≤ ξα, f(t, Yt, Zt) ≤ fα(t, Yt, Zt) so the solutions to the BSDEs

have the relationship that a.s. ∀t ∈ [0, T ], Yt ≤ Y α
t . As a result, a.s. ∀t ∈ [0, T ], Yt ≤ infα Y

α
t .

By the existence of α̂ ∈ A , consider (f α̂, ξα̂) to find that (Y, Z), (Y α̂, Zα̂) are both solution pairs to the BSDE

with this driver and terminal condition. By uniqueness, a.s. ∀t ∈ [0, T ], Yt = Y α̂
t so Yt = Y α̂

t ≥ infα Y
α
t .

Remark. It’s easy to connect such Y α
t to the problem value under control α. Then, α̂ stands for the optimal control

and Y α̂
t is just the value function. The theorem above is telling us how to characterize the optimal control and the

value function with BSDE, simply taking inf w.r.t. control for driver and terminal condition respectively will work.

To see the correspondence between Y as the solution to BSDE and its structure as a value function, let’s first

set up the stochastic control problem. Assume that the driver f is concave and

F (t, b, c) = sup
(y,z)

{f(t, y, z)− yb− zc} (b, c) ∈ R× Rm (514)

as the Frenchel conjugate, so F is convex. The control variables are βt ∈ R, γt ∈ Rm taking values in the admissible
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set

A =

{
(β, γ) : E

∫ T

0

||F (t, βt, γt)||2 dt <∞, (β, γ) bounded progressive

}
(515)

Since f is concave, we know that

f(t, y, z) = inf
(b,c)

{F (t, b, c) + yb+ zc} (516)

by the property of Frenchel conjugate. Naturally, we consider the family of linear drivers

fβ,γ(t, y, z) = F (t, βt, γt) + yβt + zγt (β, γ) ∈ A (517)

and assume that the solution to BSDE(fβ,γ , ξ) is denoted (Y β,γ , Zβ,γ)

Theorem 22. (Solution to BSDE with Concave Driver as Value Function) Let (Y, Z) denote the solution

to BSDE(f, ξ), then a.s. ∀t ∈ [0, T ], Yt = inf(β,γ)∈A Y β,γ
t is the value function of such stochastic control problem

and

Y β,γ
t = EQγ

[∫ T

t

e
∫ s
t
βu duF (s, βs, γs) ds+ e

∫ T
t

βu duξ
∣∣∣Ft

]
(518)

where Qγ is the probability measure with MG density process Lt such thatdLt = Ltγt dBt

L0 = 1
(519)

Proof. By the definition of F , ∀(β, γ) ∈ A , f ≤ fβ,γ and there exists (b̂(t, y, z), ĉ(t, y, z)) such that f(t, y, z) =

F (t, b̂, ĉ) + yb̂ + zĉ. Since f is Lipschitz, (b̂, ĉ) is bounded. As a result, there exists (β̂, γ̂) bounded progressive

(measurable selection theorem, details not important here) such that ∀t ∈ [0, T ], f(t, Yt, Zt) = f β̂,γ̂(t, Yt, Zt). From

the theorem above, we immediately conclude that

a.s. ∀t ∈ [0, T ], Yt = inf
(β,γ)∈A

Y β,γ
t (520)

Now (Y β,γ , Zβ,γ) is the solution to the linear BSDEdYt = −[F (t, Yt, Zt) + Ytβt + Ztγt] dt+ Zt dBt

YT = ξ
(521)
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so by previous theorems, we know that

ΓtY
β,γ
t = E

[
ΓT ξ +

∫ T

t

ΓsF (s, Ys, Zs) ds
∣∣∣Ft

]
(522)

for the adjoint process Γt as the solution todΓt = Γt(βt dt+ γt dBt)

Γ0 = 1
(523)

now set Γt = e
∫ t
0
βu duLt to find that L0 = 1 and

dΓt = e
∫ t
0
βu duLtβt dt+ e

∫ t
0
βu du dLt (524)

so Lt follows the SDE

dLt = Ltγt dBt (525)

The last step comes from

Y β,γ
t = E

[
ΓT

Γt
ξ +

∫ T

t

Γs

Γt
F (s, Ys, Zs) ds

∣∣∣Ft

]
(526)

=
1

Lt
E

[∫ T

t

e
∫ s
t
βu duF (s, βs, γs)Ls ds+ e

∫ T
t

βu duξLT

∣∣∣Ft

]
(527)

= EQγ

[∫ T

t

e
∫ s
t
βu duF (s, βs, γs) ds+ e

∫ T
t

βu duξ
∣∣∣Ft

]
(528)

Remark. Note that the MG density process here refers to the Radon-Nikodym derivative process restricted on a

filtration as a MG. In other words, the probability measure Qγ is given by

dQγ

dP

∣∣∣
Ft

= Lt (529)

where the LHS is the Radon-Nikodym derivative of two probability measure restricted on sigma field Ft.

As a result, the Bayes formula can be written as: for Q << P and Zt as the MG density process of Q w.r.t.

P, for any stopping time σ ≤ τ , and ξ ∈ Fτ such that EQ|ξ| <∞,

EQ(ξ|Fσ) =
EP(Zτξ|Fσ)

Zσ
Q− a.s. (530)
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which can be proved easily by the definition of RN derivative that

∀A ∈ Fσ,EQ[EQ(ξ|Fσ)ZσIA] = EQ(ξZσIA) (531)

EQ[EP(Zτξ|Fσ)IA] = EP[Zσ · EP(ZτξIA|Fσ)] = EP(ZσZτξIA) = EQ(ξZσIA) (532)

Take τ = σ = T and Z = L to see that the last equation in the proof of the theorem above holds.

Remark. To conclude, when the driver is concave, by taking the Frenchel conjugate F of driver f and varying the

last two components of F as controls β, γ, one may find that Y β,γ
t is actually the problem value of a stochastic control

problem under a different probability measure Qγ with running cost∫ T

t

e
∫ s
t
βu duF (s, βs, γs) ds (533)

in time interval [t, T ] and terminal cost

e
∫ T
t

βu duξ (534)

at time T (note that ξ ∈ FT ). The concavity ensures that the double conjugate of f is still f itself and thus f has

the structure as the inf of a family of linear drivers w.r.t. controls, leading to the solution to the BSDE Yt as the inf

of problem values, i.e. the value function.
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Pontryagin Maximum Principle

The maximization formulation of stochastic control problem is slightly different from what we have done in the

past. Here we consider the maximization problem instead of the minimization problem in finite time horizon. So the

state process Xt still has dynamics dXt = b(t,Xt, αt) dt+ σ(t,Xt, αt) dBt

X0 = x
(535)

as a diffusion process with admissible control set A and the goal is to find optimal control α∗ to achieve

sup
α∈A

E

[∫ T

0

f(t,Xt, αt) dt+ g(XT )

]
(536)

let’s denote J(α) = E
[∫ T

0
f(t,Xt, αt) dt+ g(XT )

]
as the problem value at time 0. All assumptions are the same to

what we have made such that f, g are both nice enough, here we require g to be C1 and concave.

We first define the Hamiltonian H as

H(t, x, α, y, z) = b(t, x, α) · y + σ(t, x, α) · z + f(t, x, α) (537)

where · means the standard inner product and y, z are dual variables (one might have guessed that they are

correspondent to (Y,Z) as the solution to BSDE). To be specific, for y ∈ Rd, z ∈ Rd×m, b(t, x, α) · y is the inner

product between two vectors and σ(t, x, α)·z is the inner product between two matrices defined as ⟨A,B⟩ = tr(ATB).

Assume that DxH exists and consider the adjoint BSDEdYt = −DxH(t,Xt, αt, Yt, Zt) dt+ Zt dBt

YT = Dxg(XT )
(538)

Theorem 23. (Pontryagin Maximum Principle) Suppose that there exists (Ŷ , Ẑ) as the solution to the adjoint

BSDE such that

∀t ∈ [0, T ], H(t, X̂t, α̂t, Ŷt, Ẑt) = max
α∈A

H(t, X̂t, α, Ŷt, Ẑt) (539)

where X̂t is the solution to the SDE for given control α̂ and the adjoint BSDE is solved based on given α̂, X̂. Now

H(t, x, α, Ŷt, Ẑt) is almost surely concave in (x, α), then α̂ is an optimal control that maximizes J(α).

Proof. Only have to prove that ∀α ∈ A , J(α̂) − J(α) = E
[∫ T

0
[f(t, X̂t, α̂t)− f(t,Xt, αt)] dt+ g(X̂T )− g(XT )

]
≥ 0.

Tear into two parts to estimate the difference of the running cost and terminal cost respectively.
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By the first-order condition of concavity,

E
[
g(X̂T )− g(XT )

]
≥ E

[
Dxg(X̂T ) · (X̂T −XT )

]
= E

[
ŶT · (X̂T −XT )

]
(540)

by Ito formula, we can write the things inside the expectation as a sum of integrals

E
[
ŶT · (X̂T −XT )

]
= E

[∫ T

0

(X̂t −Xt) dŶt +

∫ T

0

Ŷt d(X̂t −Xt) +

∫ T

0

d
〈
Y, X̂ −X

〉
t

]
(541)

= E

[∫ T

0

(X̂t −Xt) dŶt +

∫ T

0

Ŷt d(X̂t −Xt) +

∫ T

0

[σ(t, X̂t, α̂t)− σ(t,Xt, αt)] · Ẑt dt

]
(542)

where [σ(t, X̂t, α̂t)−σ(t,Xt, αt)] · Ẑt = tr
(
[σ(t, X̂t, α̂t)− σ(t,Xt, αt)]

T Ẑt

)
is the inner product. By assuming that

(which can be verified after solving out everything)∫ T

0

(X̂t −Xt)Ẑt dBt,

∫ T

0

Ŷt[σ(t, X̂t, α̂t)− σ(t,Xt, αt)] dBt (543)

are both MGs in T , they won’t contribute to the expectation and

E
[
g(X̂T )− g(XT )

]
(544)

≥ E

[∫ T

0

(X̂t −Xt) dŶt +

∫ T

0

Ŷt d(X̂t −Xt) +

∫ T

0

tr
(
[σ(t, X̂t, α̂t)− σ(t,Xt, αt)]

T Ẑt

)
dt

]
(545)

= E
[
−
∫ T

0

(X̂t −Xt) ·DxH(t, X̂t, α̂t, Ŷt, Ẑt) dt+

∫ T

0

Ŷt[b(t, X̂t, α̂t)− b(t,Xt, αt)] dt (546)

+

∫ T

0

tr
(
[σ(t, X̂t, α̂t)− σ(t,Xt, αt)]

T Ẑt

)
dt
]

(547)

For the running cost part, apply the definition of Hamiltonian to get

E

[∫ T

0

[f(t, X̂t, α̂t)− f(t,Xt, αt)] dt

]
(548)

= E
[ ∫ T

0

[H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)] dt−
∫ T

0

Ŷt[b(t, X̂t, α̂t)− b(t,Xt, αt)] dt (549)

−
∫ T

0

tr
(
[σ(t, X̂t, α̂t)− σ(t,Xt, αt)]

T Ẑt

)
dt
]

(550)
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Now take the sum of all those estimates to see

J(α̂)− J(α) ≥ E

[∫ T

0

[H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)− (X̂t −Xt) ·DxH(t, X̂t, α̂t, Ŷt, Ẑt)] dt

]
(551)

≥ 0 (552)

by the conditions of the Pontryagin maximum principle. To see this, denote H(t, X̂t, α̂t, Ŷt, Ẑt) as H(X̂, α̂) for

convenience (only keep the X and α components). Assume that DαH exists, then by joint concavity in (x, α),

H(X̂, α̂)−H(X,α) ≥ DxH(X̂, α̂) · (X̂ −X) +DαH(X̂, α̂) · (α̂− α) (553)

= DxH(X̂, α̂) · (X̂ −X) (554)

since α̂ is the control such that H(X̂, α) is maximized, DαH(X̂, α̂) = 0. For the general case, one can prove with

subdifferential in the similar way.

Remark. There is a connection between BSDE approach and PDE approach that in the maximization

problem the HJBE of value function v(t, x) is formed as

∂tv + sup
α∈A

{G(t, x, α, ∂xv, ∂xxv)} (555)

where G(t, x, α, ∂xv, ∂xxv) = Lαv + f(t, x, α).

When the value function is C1,3 with nice enough regularity, and the existence of optimal control α̂ ∈ A is

ensured, with X̂ as the state process generated by the dynamics for given control α̂, then

G(t, X̂t, α̂t, ∂xv(t, X̂t), ∂xxv(t, X̂t)) = max
α∈A

G(t, X̂t, α, ∂xv(t, X̂t), ∂xxv(t, X̂t)) (556)

so the optimal strategy maximizes the sup in the HJBE when the state process is fixed as X̂. Moreover,

(Ŷt, Ẑt) = (∂xv(t, X̂t), ∂xxv(t, X̂t) · σ(t, X̂t, α̂t)) (557)

is just the solution to the adjoint BSDE (similar to the form in the motivation of BSDE we have introduced above).

Remark. In minimization problems, it’s obvious that then we shall minimize the Hamiltonian instead of

maximizing it and we will just require H to be convex in (x, α) instead of being concave, g to be convex instead

of being concave.
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Stochastic Control Problem: BSDE Approach

By the Pontryagin maximum principle, we state the main steps of solving the stochastic control problem.

• Get the Hamiltonian and solve for α̂(t, x, y, z) = maxαH(t, x, α, y, z) for ∀t, x, y, z, this will give the

control α as a function of t, x, y, z that always satisfies the condition in the Pontryagin maximum principle

• Solve the coupled FBSDE (Forward-Backward SDE)

dXt = b(t,Xt, α̂(t,Xt, Yt, Zt)) dt+ σ(t,Xt, α̂(t,Xt, Yt, Zt)) dBt

X0 = x

dYt = −DxH(t,Xt, α̂(t,Xt, Yt, Zt), Yt, Zt) dt+ Zt dBt

YT = Dxg(XT )

(558)

to get α̂, X̂, Ŷ , Ẑ as a set of solution. Note that we plug in the control variable as a function of t,X, Y, Z to

apply Pontryagin maximum principle. The FSDE is the dynamics of the state process X while the BSDE is

the dynamics of the adjoint (Y, Z). This FBSDE is called coupled since two SDEs cannot be solved separately.

• Verify the concavity of H(t, x, α, Ŷt, Ẑt) in (x, α) and the admissibility of α̂ as the optimal control. One might

notice that the optimal control α̂(t, X̂t, Ŷt, Ẑt) depends on the solution to the FBSDE. As a result, one has

to first solve the FBSDE and then determine from measurability which kind of optimal control the solution

corresponds to (open-loop, close-loop etc.).

One advantage of BSDE approach is that it makes it possible for us to find optimal controls other than Markovian

controls. Note that the PDE approach depends on HJBE, which has its root in the dynamic programming principle

with a natural Markovian structure. As a result, the PDE approach can only be applied for the Markovian

case. On the other hand, as we will see in a later context, the BSDE approach can be applied to find

open-loop, closed-loop or Markovian optimal controls which has much wider applications.

It might be quite obvious that the most difficult step lies in solving the coupled FBSDE. Let’s use some examples

to illustrate the BSDE approach.
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Example: Exponential Utility Maximization with Option Payoff

Now there is a riskless asset with price S0 = 1 that does not change with time, i.e. with no interest rate, and a

risky asset in the market whose price St at time t follows the SDE

dSt = St(bt dt+ σt dBt) (559)

where b, σ are bounded progressive processes with ∃ε > 0, a.s. ∀t ∈ [0, T ], σt ≥ ε. A person has wealth Xt at time t

and the control variable is αt that denotes the amount of wealth invested in risky asset at time t (similar setting to

Merton problem). We know that the total wealth process follows the SDEdXt = αt
dSt

St
= αt(bt dt+ σt dBt)

X0 = x
(560)

with the admissible set of controls A as the collection of all progressive α such that
∫ T

0
||αt||2 dt <∞ a.s. and that

the solution Xx,α for given α and initial value x is lower bounded.

Now a person has to replicate the option payoff ξ at time T for bounded ξ ∈ FT (a European option but

not necessarily a call or a put, the option can have any reasonable payoff function on the day of maturity) in order

to hedge the risk contained in selling such an option. The utility function is now exponential and concave

U(x) = −e−ηx (η > 0) (561)

so one’s goal is to find the optimal control to maximize the expected terminal utility under the condition

that one fully hedges the risk of selling the option. In other words, this person will have Xx,α
T wealth on the

day of maturity following control α ∈ A but since he is selling out this option, he will have to pay the option payoff

ξ, so one wants to maximize

v(x) = sup
α∈A

EU(Xx,α
T − ξ) (562)

A certain approach to deal with this problem lies in constructing a family of process {Jα
t }t∈[0,T ] , α ∈

A such that

• ∀α ∈ A , Jα
T = U(Xx,α

T − ξ)

• Jα
0 is constant and is independent of α ∈ A

• ∀α ∈ A , Jα is a super-MG and ∃α̂ ∈ A such that J α̂ is a MG

The point of doing so is that now

∀α ∈ A ,EU(Xx,α
T − ξ) = EJα

T ≤ EJα
0 = EJ α̂

0 = EJ α̂
T = EU(Xx,α̂

T − ξ) (563)
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so α̂ ∈ A is just the optimal control and v(x) = EJ α̂
0 is the maximum expected utility.

Let’s consider the family

Jα
t = U(Xx,α

t − Yt) (564)

here with (Y, Z) as the solution to the BSDEdYt = −f(t, Zt) dt+ Zt dBt

YT = ξ
(565)

for the driver f to be specified later. Now the first two conditions of Jα
t are naturally satisfied with the value function

v(x) = U(x − Y0) (note that now the filtration is taken as the Brownian filtration and the solution to the BSDE

should be adapted, which means that Y0 ∈ F0 so Y0 is almost surely constant). To satisfy the third condition, we

have to do some transformations to Jα
t to use its structure. Apply Ito formula to find

log(−Jα
t ) = −η(Xt − Yt) (566)

= −η(x− Y0)− η

∫ t

0

dXs + η

∫ t

0

dYs (567)

= −η(x− Y0) +

∫ t

0

(−ηαsbs − ηf(s, Zs)) ds+

∫ t

0

(ηZs − ηαsσs) dBs (568)

Jα
t = −e−η(x−Y0)e

∫ t
0
(−ηαsbs−ηf(s,Zs)) dse

∫ t
0
(ηZs−ηαsσs) dBs (569)

now let’s notice that the stochastic integral on the exponential can be written in the form as an exponential local

MG that

Jα
t = −e−η(x−Y0)e

∫ t
0
(ηZs−ηαsσs) dBs− 1

2

∫ t
0
(ηZs−ηαsσs)

2 dse
∫ t
0
(−ηαsbs−ηf(s,Zs)+

1
2 (ηZs−ηαsσs)

2) ds (570)

now the product of first two terms (excluding the negative sign) on RHS form an non-negative exponential local MG

Mα
t (so it must be a super-MG) and we just have to look at the last term

Cα
t = −e

∫ t
0
(−ηαsbs−ηf(s,Zs)+

1
2 (ηZs−ηαsσs)

2) ds (571)

= −eη
∫ t
0

η
2 (Zs−αsσs)

2−αsbs−f(s,Zs) ds (572)

= −eη
∫ t
0
ρ(s,αs,Zs) ds (573)

where ρ(t, a, z) = η
2 (z − aσt)

2 − abt − f(t, z). In order to make Jα
t a super-MG for ∀α ∈ A and to make it

a MG for some α̂ ∈ A , we have to make some restrictions on ρ order to specify the driver f in the

BSDE. One direct observation is that now Jα
t is already a product of Cα

t and a super-MG, so we want to see Cα
t
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being decreasing in t for ∀α ∈ A such that

∀α ∈ A ,∀0 < s < t,E(Jα
t |Fs) = E(Mα

t C
α
t |Fs) ≤ Cα

s · E(Mα
t |Fs) ≤ Cα

s M
α
s = Jα

s (574)

in order to ensure this, we only need to add the condition that

∀α ∈ A ,∀t ∈ [0, T ], ρ(t, αt, Zt) ≥ 0 (575)

On the other hand, we want to make sure that ∃α̂ ∈ A such that J α̂
t = M α̂

t C
α̂
t is a MG. To let this be true,

notice that we only need to ensure that ∃α̂ ∈ A , Cα
t = −1, i.e. Cα̂

t is constantly −1 for some α̂. Now it’s still

unclear why such condition helps us ensure that J α̂
t is a MG but we will see later (since it depends on the form of

α̂). Let’s add the condition that

∃α̂ ∈ A ,∀t ∈ [0, T ], ρ(t, α̂t, Zt) = 0 (576)

Now the problem turns into finding an appropriate driver f such that ρ(t, αt, Zt) =
η
2 (Zt−αtσt)

2−αtbt−
f(t, Zt) is always non-negative and can reach 0 for some α̂ ∈ A . Naturally, consider taking αt =

1
σt

(
Zt +

1
η

bt
σt

)
to minimize

η

2
(Zt − αtσt)

2 − αtbt (577)

and find that as a result we should take the driver of BSDE as

f(t, Zt) = −Zt
bt
σt

− 1

2η

b2t
σ2
t

(578)

The last step is to verify that J α̂
t is a MG for

α̂t =
1

σt

(
Zt +

1

η

bt
σt

)
∈ A (579)

plug in to find

J α̂
t = −M α̂

t = −e−η(x−Y0)e
∫ t
0
(ηZs−ηα̂sσs) dBs− 1

2

∫ t
0
(ηZs−ηα̂sσs)

2 ds (580)

ignoring the constant, it is the exponential local MG of −
∫ t

0
bs
σs
dBs where

{
bs
σs

}
s∈[0,T ]

∈ H2,1 since b, σ are bounded

process and σ is bounded away from 0. As a result, this exponential local MG is actually a true MG and we are

done with all the conditions of Jα
t . The optimal control is just given by

α̂t =
1

σt

(
Zt +

1

η

bt
σt

)
∈ A (581)
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and the value function is

v(x) = −e−η(x−Y0) (582)

where (Y,Z) is the solution to the BSDEdYt =
(
Zt

bt
σt

+ 1
2η

b2t
σ2
t

)
dt+ Zt dBt

YT = ξ
(583)

Remark. Let’s now talk about the intuition of this method. It’s easily seen that this problem has something to do

with replicating a financial derivative in a complete financial market. In a complete financial market, any

contingent claim that pays bounded random payoff ξ ∈ FT on the maturity date T can be perfectly replicated by a

self-financing wealth process.

On the other hand, this problem can also be understood in the risk-neutral world where risk-neutral measure Q
is introduced such that

dSt = Stσt dB
Q
t (584)

so

BQ
t = BP

t +

∫ t

0

bs
σs
ds (585)

where dQ
dP = e

−
∫ T
0

bs
σs

dBs− 1
2

∫ T
0

b2s
σ2
s
ds
, now xξ = EQξ is just the no-arbitrage price of such option and ∃π ∈ A , ξ =

X
xξ,π
T as the continuous-time Delta-hedging strategy. The problem is equivalent to maximizing

v(x) = sup
α∈A

EPU(X
x−xξ,α−π
T ) (586)

with 0 payoff received at time T (already hedged by π). They are actually two sides of the same coin. By calculations

above, we know πt =
Zt

σt
and the optimal control for this new problem to be α̂t =

1
η

bt
σ2
t
.

Remark. One might be confused with the meaning of the Y, Z, Jα we mentioned above in the original problem. Here

Yt stands for the value of the European option evaluated at time t. That’s why YT = ξ is FT measurable and is

random (since it should be a function of ST , the stock price on the maturity date) and Y0 standing for the current

price of this option is a constant. BSDE has a natural correspondence with the evolution of option value

since option values are the easiest to evaluate on the maturity date but are difficult to figure out previous to maturity.

Jα
t is just the utility at time t following control α in the position of selling out the option in this example, its

meaning is actually the same as the ”problem value” in the stochastic control problem and is closely connected with

the value function. Here we adopt neither the dynamic programming approach nor the Pontryagin maximum principle

but use another method to form the problem value Jα
t as a super-MG for all control and a MG for the
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optimal control. Note that the martingality is always the hardest part to construct and shall always be verified base

on the specific form of the optimal control (which means that one always has to ”guess” some possible conditions

such that the martingality holds, solve out the optimal control and go back to verify).

One might be curious about the meaning of Zt. Now let’s assume that Yt = v(t,Xt) since Yt stands for the value

of the option at time t, a natural structure of value function. By Ito formula,

dYt = ∂tv(t,Xt) dt+ ∂xv(t,Xt) dXt + ∂xxv(t,Xt) d ⟨X,X⟩t (587)

assume that dXt = b(t,Xt) dt + σ(t,Xt) dBt and compare the dBt term on both sides with the BSDE to get

Zt dBt = ∂xv(t,Xt)σ(t,Xt) dBt so Zt = ∂xv(t,Xt)σ(t,Xt), which can be heuristically understood as the Delta-

Hedging strategy since ∂xv is the sensitivity of option value w.r.t. stock price, the definition of option Delta.

So far, we have built the understanding in BSDE that it describes the evolution of option value and Delta hedging

strategy, it then makes sense that these two concepts shall be solved simultaneously (binomial option pricing).

When the market is incomplete, such method constructing Jα
t still holds, but one may get a more complicated

driver f (not linear in Zt any longer).
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Example: Mean-Variance Criterion for Portfolio Selection

There’s a riskless asset with price S0
t at time t with continuous-time interest rate r and a stock with price St at

time t following the Black-Scholes model

dSt = St(b dt+ σ dBt) (588)

where b > r, σ > 0 are given constants. A person chooses to invest αt amount of wealth in the stock at time t (the

control), and he has total wealth Xt at time t, so we would be able to write down the dynamics of Xt

dXt = [rXt + αt(b− r)] dt+ σαt dBt (589)

with initial wealth X0 = x and the set of admissible controls is given by A containing all progressive processes

α taking value in R such that E
∫ T

0
α2
t dt < ∞. So far, the setting is the same as that for the Merton problem.

However, our objective is not to maximize the utility at time T but to minimize the variance of the terminal

total wealth under the condition that the expectation of the terminal total wealth equals a given

constant m (mean-variance criterion).

In other words, we want to find the optimal control that achieves the following inf for given m

V (m) = inf
α∈A

{V ar(XT ) : EXT = m} (590)

however, the stochastic control problem is now constrained to the condition EXT = m so it’s not easy to deal with.

In order to remove such constraint, we consider the conjugate

Ṽ (λ) = inf
α∈A

{
E(XT − λ)2

}
(591)

The reason we are using conjugate of this special form is to transform the constrained control problem

into an equivalent unconstrained problem. To see the conjugate relationship, ∀ε > 0,∃αε ∈ A that generates

the diffusion Xx,αε

t such that EXx,αε

T = m,V ar(Xx,αε

T ) ≤ V (m)+ε. So E(Xx,αε

T −λ)2 = V ar(Xx,αε

T )+E2(Xx,αε

T −λ)

∀m,∀ε > 0, Ṽ (λ) ≤ E(Xx,αε

T − λ)2 ≤ V (m) + ε+ (m− λ)2 (592)

similarly, ∀ε > 0,∃αλ ∈ A that generates the diffusion Xx,αλ

t such that E(Xx,αλ

T − λ)2 ≤ Ṽ (λ) + ε. So we have

Ṽ (λ) ≥ E(Xx,αλ

T − λ)2 − ε = V ar(Xx,αλ

T ) + E2(Xx,αλ

T − λ)− ε (593)

= V (EXx,αλ

T ) + (EXx,αλ

T − λ)2 − ε (594)

as a result, we conclude that

Ṽ (λ) = inf
m∈R

{
V (m) + (m− λ)2

}
(595)
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On the other hand, we also have

V (m) = sup
λ∈R

{
Ṽ (λ)− (m− λ)2

}
(596)

since Ṽ (λ) = −2 supm∈R

{
mλ− V (m)+m2

2

}
+ λ2 can be written as the form of Frenchel conjugate and V (m)+m2

2 is

strictly convex with Frenchel conjugate

sup
m∈R

{
mλ− V (m) +m2

2

}
=
λ2 − Ṽ (λ)

2
(597)

so its double conjugate is itself and

V (m) +m2

2
= sup

m∈R

{
mλ− λ2 − Ṽ (λ)

2

}
(598)

which proves the equality above. So far, we have seen the conjugate relationship between V and Ṽ . This

is important because this enables us to shift our gears from finding the optimal control achieving the inf in V (m)

to finding the optimal control achieving the inf in Ṽ (λ). To see the connections between those two problems, if

λ = λm achieves sup in V (m) = supλ∈R

{
Ṽ (λ)− (m− λ)2

}
then we immediately know that m achieves the inf

in Ṽ (λm) = infn∈R
{
V (n) + (n− λm)2

}
and m is also the unique real number that can achieve this sup by strict

convexity. From the calculations we have done above, the inf in Ṽ (λm) is achieved when m = EXx,αλm

T . As a result,

V (m) = V ar(EXx,αλm

T ) (599)

so the optimal control to the original problem is αλm , the optimal control in the new problem setting

with λ = λm plugged in where λm is the λ that achieves the sup in V (m) = supλ∈R

{
Ṽ (λ)− (m− λ)2

}
such that the conjugacy holds.

Now that we have transformed the problem into an easier one, our objective becomes finding optimal control

that achieves the inf in

Ṽ (λ) = inf
α∈A

{
E(XT − λ)2

}
(600)

for given λ ∈ R. Recall the Pontryagin maximum principle that

H(t, x, a, y, z) = [rx+ a(b− r)]y + σaz (601)

so DxH(t, x, a, y, z) = ry, g(x) = (x− λ)2, Dxg(x) = 2(x− λ) and the adjoint BSDE isdYt = −rYt dt+ Zt dBt

YT = 2(XT − λ)
(602)
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let (Ŷ , Ẑ) be the solution pair to this BSDE, α̂ ∈ A be the optimal control and X̂ the diffusion generated by α̂,

notice that

H(t, x, a, Ŷt, Ẑt) = [rx+ a(b− r)]Ŷt + σaẐt (603)

is linear in (x, a) so it satisfies the concavity condition. Now we want to maximize the Hamiltonian H(t, x, a, y, z)

w.r.t. a to notice that this is possible if and only if

a.s. ∀t ∈ [0, T ], (b− r)Ŷt + σẐt = 0 (604)

by the linearity in a. The next step is to find the solution to the adjoint BSDE with the condition above also satisfied.

Here consider the ansatz (most often, one would like to consider the ansatz that Ŷt is affine in X̂t with the only

randomness coming from X̂t)

Ŷt = φ(t)X̂t + ψ(t) (605)

to get the ODEs for φ,ψ ∈ C1 that
φ′(t)X̂t + φ(t)[rX̂t + α̂t(b− r)] + ψ′(t) + r[φ(t)X̂t + ψ(t)] = 0

φ(t)σα̂t − Ẑt = 0

φ(T ) = 2, ψ(T ) = −2λ

(606)

the second ODE and the maximization of Hamiltonian give the optimal control

α̂t =
Ẑt

σφ(t)
=

− b−r
σ Ŷt

σφ(t)
=

(r − b)Ŷt
σ2φ(t)

=
(r − b)[φ(t)X̂t + ψ(t)]

σ2φ(t)
(607)

while the first ODE also gives the optimal control that

α̂t =
φ′(t)X̂t + ψ′(t) + r[φ(t)X̂t + ψ(t)]

(r − b)φ(t)
+

r

r − b
X̂t =

[φ′(t) + 2rφ(t)]X̂t + ψ′(t) + rψ(t)

(r − b)φ(t)
(608)

since those two optimal controls shall be the same for the original problem, by comparing the coefficients of X̂t and

the constant terms (since φ,ψ are deterministic), we get the simplified ODE systems for φ,ψ that
φ′(t) =

(
(r−b)2

σ2 − 2r
)
φ(t)

ψ′(t) =
(

(r−b)2

σ2 − r
)
ψ(t)

φ(T ) = 2, ψ(T ) = −2λ

(609)
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and they are very easy to solve φ(t) = 2e

(
(r−b)2

σ2 −2r

)
(t−T )

ψ(t) = −2λe

(
(r−b)2

σ2 −r

)
(t−T )

(610)

Now we are done with the new stochastic control problem that achieves the inf in Ṽ (λ). The optimal Marko-

vian control of the new problem is given by

∀λ ∈ R, α̂λ
t =

(r − b)[φ(t)Xt + ψλ(t)]

σ2φ(t)
(611)

note that the dependence of λ only appears in ψ so we denote ψ(t) as ψλ(t). To get the value function Ṽ (λ),

apply Ito formula for 1
2φ(t)X

2
t + ψλ(t)Xt to see

X2
T − 2λXT =

1

2
φ(0)x2 + ψλ(0)x+

∫ T

0

1

2
φ′(t)X2

t + ψ′
λ(t)Xt dt (612)

+

∫ T

0

φ(t)Xt + ψλ(t) dXt +
1

2

∫ T

0

φ(t) d ⟨X,X⟩t (613)

take an expectation on both sides and plug in the optimal control α̂λ
t to find that

Ṽ (λ) = e−
(b−r)2

σ2 T (λ− erTx)2 (614)

The final step is to go back to the original problem. The value function V (m) can be derived easily from the

conjugate relationship. To get the optimal control α̂m
t for the original problem, recall that we only have to find λm

that achieves the sup in V (m) = supλ∈R

{
Ṽ (λ)− (m− λ)2

}
, some calculations tell us that

λm =
m− e

[
r− (b−r)2

σ2

]
T
x

1− e−
(b−r)2

σ2 T
(615)

and the optimal Markovian control for the original problem is given by

∀m ∈ R, α̂m
t =

(r − b)[φ(t)Xt + ψλm
(t)]

σ2φ(t)
(616)

which ends the discussion.

Remark. This example exhibits the way to apply Pontryagin maximum principle. Note that in this example we get

no information on α̂ by maximizing the Hamiltonian (generally we would be able to represent α̂ = α̂(t, x, y, z) as a

function and plug back to get FBSDE, which is more complicated). The transformation to a new unconstrained

stochastic control problem with conjugate value fucntion is critical and greatly simplifies the calculations.
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Stochastic Differential Game: Mean Field Games and Systemic Risk

As an extension to multi-agent games (finite), we want to find the Nash Equilibrium (NE), which is a set

of control that any one agent has no motivation to deviate from his own control given all other agents’ controls.

Let’s consider a multi-agent control problem in the simple setting as an example. For simplicity, we will consider

the linear-quadratic (LQ) game with finitely many homogeneous players, for which there exists explicit solution

of Nash Equilibrium.

It turns out that the PDE and BSDE approach can be easily extended to solve the stochastic differential games.

Problem Setting

Now there are N banks (N large enough) in the economy as agents and Xi
t denotes the log-monetary reserves

of the i-th bank at time t (state process) with the dynamics given as

dXi
t = [a(Xt −Xi

t) + αi
t] dt+ σ(

√
1− ρ2 dBi

t + ρ dB0
t ) (617)

where i = 1, 2, .., N denotes each bank and Bt = (B0
t , ..., B

N
t ) is an (N +1)-dimensional BM. The reason we have the

diffusion term
√
1− ρ2 dBi

t +ρ dB
0
t is that B̃i

t =
√
1− ρ2Bi

t +ρB
0
t gives N correlated BM. To see this, just compute

the quadratic variation

〈
B̃i, B̃j

〉
t
=
〈√

1− ρ2Bi + ρB0,
√
1− ρ2Bj + ρB0

〉
t
=

t i = j

ρ2t i ̸= j
(618)

to see that each B̃i is BM but they are not necessarily independent. This is the simple way we take to organize

correlated BM using common noise B0
t .

Here αi
t is the control process for the i-th bank to determine. It can be explained as the borrowing/lending rate

to a central bank. a > 0 is a given mean-reversion rate similar to that in the OU process and Xt = 1
N

∑N
i=1X

i
t

always denotes the empirical mean.

Now each bank has its own problem value to minimize, the problem value of the i-th bank is

J i(α) = E

[∫ T

0

fi(Xt, α
i
t) dt+ g(XT )

]
(619)

note that since we are in the multi-agent setting, the problem value depends on α = (α1, ..., αN ) not only its own

control but also the control of other banks (since they jointly affect the evolution of state process Xt). The running

cost depends on fi which is a function of the state process Xt = (X1
t , .., X

N
t ) and its own control αi

t. The terminal

cost only depends on the terminal state of the i-th bank. Now fi, gi has simple forms given byfi(x, αi) = 1
2 (α

i)2 − qαi(x− xi) + ε
2 (x̄− xi)2

gi(x) =
c
2 (x− xi)2

(620)
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quadratic functions, q > 0 controls the incentive of borrowing and lending from central bank and c > 0 is a parameter

penalizing the deviation from the average state. Now we assume that q2 ≤ ε so fi is convex in (x, αi). The convexity

will make sense in a later context.

For the convenience of notations, let’s rewrite the whole dynamics of Xt in the vector form that

d

X
1
t

· · ·
XN

t

 = b(t,Xt, αt) dt+ σ(t,Xt)


dB0

t

dB1
t

· · ·
dBN

t

 (621)

where

b(t,Xt, αt) =

 a(Xt −X1
t ) + α1

t

· · ·
a(Xt −XN

t ) + αN
t

 ∈ RN (622)

σ(t,Xt) = σ


ρ

√
1− ρ2 0 · · · 0

ρ 0
√
1− ρ2 · · · 0

· · · · · · · · · · · · · · ·
ρ 0 0 · · ·

√
1− ρ2

 ∈ RN×(N+1) (623)
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Markovian Case: PDE Approach

The first step of PDE approach is to build up the value function. Since now there are N banks, each bank has

its own value function

V i(t, x) = inf
α∈A

Et,x

[∫ T

t

fi(Xt, α
i
t) dt+ gi(X

i
T )

]
(t ∈ R, x ∈ RN ) (624)

where Et,x means that the expectation is under the initial value condition that Xt = x and A is the admissible set

with integrability conditions for all Markovian controls (here it means that It = σ(t,Xt) so when making

the decision each bank has complete information on all banks’ states). Note that since the problem value

for the i-th banks depends on the state of all banks (fi is a function of X1
t , ..., X

N
t ), here we must include all the

states of the system in the value function. The HJBE for finite time horizon tells us that∂tV i + infαi∈A {LαV + fi} = 0

V i(T, x) = gi(x)
(625)

with the action of the infinitesimal generator

LαV =

N∑
j=1

[a(x− xj) + αj ]∂xjV i (626)

+
σ2

2
tr



ρ

√
1− ρ2 0 · · · 0

ρ 0
√

1− ρ2 · · · 0

· · · · · · · · · · · · · · ·
ρ 0 0 · · ·

√
1− ρ2



ρ

√
1− ρ2 0 · · · 0

ρ 0
√
1− ρ2 · · · 0

· · · · · · · · · · · · · · ·
ρ 0 0 · · ·

√
1− ρ2


T

H


(627)

=

N∑
j=1

[a(x− xj) + αj ]∂xjV i +
σ2

2

N∑
j,k=1

[ρ2 + δj,k(1− ρ2)]∂xj ,xkV i (628)

now for player i, he can only determine which αi to take and all other players’ controls are actually functions of t, x

denoted

αj = ϕj(t, x) (j ̸= i) (629)

at this point we can write down the HJBE as∂tV i + infαi∈A

{∑N
j=1[a(x− xj) + αj ]∂xjV i + σ2

2

∑N
j,k=1[ρ

2 + δj,k(1− ρ2)]∂xj ,xkV i + fi

}
= 0

V i(T, x) = gi(x)
(630)
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First get rid of the inf by considering the optimization problem

min
αi

Q(α) =

N∑
j=1

[a(x− xj) + αj ]∂xjV i +
σ2

2

N∑
j,k=1

[ρ2 + δj,k(1− ρ2)]∂xj ,xkV i + fi (631)

notice that actually only the terms relevant to αi matters

∂Q

∂αi
= ∂xiV i +

∂fi
∂αi

(632)

= ∂xiV i + αi − q(x− xi) = 0 (633)

the optimal Markovian control is given by

α̂i
t = q(Xt −Xi

t)− ∂xiV i(t,Xt) (634)

where ∂xiV i is unknown and needs to be solved. Since this is the optimal control for the i-th bank and in this game

symmetricity holds, every bank shall have this optimal Markovian control to form Markovian NE.

Now plug back into the HJBE to see that it becomes

∂tV
i +

N∑
j=1

[(a+ q)(x− xj)− ∂xjV j ]∂xjV i +
σ2

2

N∑
j,k=1

[ρ2 + δj,k(1− ρ2)]∂xj ,xkV i (635)

+
1

2
(ε− q2)(x− xi)2 +

1

2
(∂xiV i)2 = 0 (636)

use the ansatz that

V i(t, x) =
ηt
2
(x− xi)2 + µt (637)

for deterministic functions ηt, µt to get the terminal conditions ηT = c, µT = 0 and∂xjV i = ηt(x− xi)
(

1
N − δi,j

)
∂xj ,xkV i = ηt

(
1
N − δi,k

) (
1
N − δi,j

) (638)

the HJBE now becomes

η′t
2
(x− xi)2 + µ′

t +

N∑
j=1

[
a+ q − ηt

(
1

N
− 1

)]
ηt(x− xi)(x− xj)

(
1

N
− δi,j

)
(639)

+
σ2

2

N∑
j,k=1

[ρ2 + δj,k(1− ρ2)]ηt

(
1

N
− δi,k

)(
1

N
− δi,j

)
(640)

+
1

2
(ε− q2)(x− xi)2 +

1

2

[
ηt(x− xj)

(
1

N
− 1

)]2
= 0 (641)
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where the only randomness comes from the term (x − xi)2, so its coefficient has to be zero, and the constant

terms shall also add up to zero. We get two ODEs where η′t, µ
′
t are the derivatives w.r.t. time t. Note that here∑N

j=1(x− xj)
(

1
N − δi,j

)
= −(x− xi), a simple transformation

η′t
2

−
[
a+ q − ηt

(
1

N
− 1

)]
ηt +

1

2
(ε− q2) +

1

2

[
ηt

(
1

N
− 1

)]2
= 0 (642)

µ′
t +

σ2

2

N∑
j,k=1

[ρ2 + δj,k(1− ρ2)]ηt

(
1

N
− δi,k

)(
1

N
− δi,j

)
= 0 (643)

Some simplifications tell us that
η′t =

(
1− 1

N2

)
η2t + 2(a+ q)ηt − (ε− q2)

µ′
t = −σ2(1−ρ2)

2

(
1− 1

N

)
ηt

ηT = c, µT = 0

(644)

to get aRicatti equation (first-order ODE with the derivative η′t equal to a quadratic in ηt) with constant coefficients

for ηt and another equation for µt which is easily solve as

µt =
σ2(1− ρ2)

2

(
1− 1

N

)∫ T

t

ηs ds (645)

if ηt is known. Now the problem only lies on solving out ηt, note that luckily this Ricatti equation is separable in

variables so we only have to use the integral that∫
1

Ax2 +Bx+ C
dx =

1

A

∫
1

y2 − B2−4AC
4A2

dy

(
y = x+

B

2A

)
(646)

=
1

A

∫
1(

y −
√
∆

2A

)(
y +

√
∆

2A

) dy (647)

=
1√
∆

(∫
1

y −
√
∆

2A

dy −
∫

1

y +
√
∆

2A

dy

)
(648)

=
1√
∆

(
log

(
y −

√
∆

2A

)
− log

(
y +

√
∆

2A

))
(649)

=
1√
∆

(
log

(
x+

B

2A
−

√
∆

2A

)
− log

(
x+

B

2A
+

√
∆

2A

))
(650)

assuming that A > 0,∆ = B2 − 4AC > 0 (q2 ≤ ε ensures that B2 − 4AC > 0 for our problem). So plug in all the
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coefficients and the terminal condition to get

ηt =
−(ε− q2)(e(δ

+−δ−)(T−t) − 1)− c(δ+e(δ
+−δ−)(T−t) − δ−)

(δ−e(δ+−δ−)(T−t) − δ+)− c(1− 1
N2 )(e(δ

+−δ−)(T−t) − 1)
(651)

where the δ±, R are given by R = (a+ q)2 + (1− 1
N2 )(ε− q2) > 0

δ± = −(a+ q)±
√
R

(652)

note that ∆ = 4R, δ± = B±
√
∆

2 and we keep the same notation as that in the paper.

For the last verification step which is omitted in the paper, notice that we have to make sure that the solution

to HJBE is the value function and the admissibility of the optimal control. Recall that V i(t, x) = ηt

2 (x − xi)2 + µt

so the V i solved meets the quadratic growth condition in x, V i ∈ C1,2. As a result, by checking the admissibility of

optimal control, the verification theorem for finite-time horizon tells us that V i is just the value function of the i-th

bank. Now

α̂i
t = q(Xt −Xi

t)− ∂xiV i(t,Xt) (653)

= q(Xt −Xi
t)−

(
1

N
− 1

)
ηt(Xt −Xi

t) (654)

is measurable w.r.t. σ(X1
t , ..., X

N
t ) so it’s Markovian and the Nash equilibrium is solved out, the i-th bank will take

the optimal Markovian strategy α̂i
t knowing the state of all other banks.
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Markovian Case: BSDE Approach

Let’s present another way to solve for the optimal Markovian control under Nash equilibrium, which is by the

BSDE approach using the Pontryagin maximum principle. The first fact to notice is that in the state dynamics, the

control only appears in the drift coefficient but not the diffusion coefficient and the diffusion coefficient also does not

contain the state, so we can use the reduced Hamiltonian of the i-th bank

Hi(t, x, α, yi,1, ..., yi,N ) =

N∑
k=1

[a(x− xk) + αk]yi,k + fi(x, α
i) (655)

this is because we only care about minimizing the Hamiltonian w.r.t. the control and the adjoint BSDE only has

something to do with ∂xH. We have to claim here that since there are N banks in this game, the Hamiltonian has

something to do with all the states of those banks and for each bank there exists dual variables yi,1, ..., yi,N denoting

the value of the process (Y i,1
t , ..., Y i,N

t ) for the i-th bank (recall that the drift coefficient in the SDE for the state

process is an N -dimensional vector, that’s why for each bank there are N dual variables yi,k and the adjoint BSDE

is a BSDE in N dimension).

However, since we are in the Markovian setting with complete information, we know that each bank can access

the states of all banks X1
t , ..., X

N
t at time t. As a result, when considering reaching Nash equilibrium, the i-th bank

has to fix the control of all other banks, but the control of all other banks shall be viewed as functions of

t, x since we know that all of them are actually choosing feedback strategies based on time and the

current state they are facing. In other words, we are still acting as if we are in the perspective of the i-th bank

and denote our strategy as αi
t and denote other banks’ strategy as αk

t = αk
t (t, x) for k ̸= i.

As a result, we shall write the Hamiltonian in the form that

Hi(t, x, α, yi,1, ..., yi,N ) =
∑
k ̸=i

[a(x− xk) + αk(t, x)]yi,k + [a(x− xi) + αi]yi,i + fi(x, α
i) (656)

and minimize Hi w.r.t. variable αi
t to get

α̂i
t = q(x− xi)− yi,i (657)

since there’s symmetricity across all the banks, the i-th bank has enough reason to believe that all other banks shall

take the same optimal control

α̂k(t, x) = q(x− xk)− yk,k(t, x) (k ̸= i) (658)

the Hamiltonian’s derivative w.r.t. variable xj is

∂xjHi = a

(
1

N
− δi,j

)
yi,i +

∑
k ̸=i

yi,k
[
a

(
1

N
− δj,k

)
+ ∂xjαk(t, x)

]
− qαi

(
1

N
− δi,j

)
+ ε(x− xi)

(
1

N
− δi,j

)
(659)
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Now consider the ansatz that Y i,j
t = ηt

(
1
N − δi,j

)
(Xt −Xi

t) (the ansatz is often taken as an affine function

for some transformations of X), plug in the formula for optimal control α̂k to find thatα̂k(t, x) = [q + ηt
(
1− 1

N

)
](x− xk)

∂xj α̂k(t, x) =
[
q + ηt

(
1− 1

N

)] (
1
N − δj,k

) (660)

so the coefficient of dt in the adjoint BSDE is just −∂xjHi(t,Xt, α̂t, Y
i,1
t , ..., Y i,N

t ). Let’s plug in the optimal control

for all agents and plug in the ansatz to get

∂xjHi(t,Xt, α̂t, Y
i,1
t , ..., Y i,N

t ) = −
(

1

N
− δi,j

)
(Xt −Xi

t)

[
− 1

N

(
1

N
− 1

)
η2t + (a+ q)ηt − (ε− q2)

]
(661)

with

∂xjgi(x) = c(x− xi)

(
1

N
− δi,j

)
(662)

so the adjoint BSDE is given bydY
i,j
t =

(
1
N − δi,j

)
(Xt −Xi

t)
[
− 1

N

(
1
N − 1

)
η2t + (a+ q)ηt − (ε− q2)

]
dt+

∑N
k=0 Z

i,j,k
t dBk

t

Y i,j
T = c(XT −Xi

T )
(

1
N − δi,j

) (663)

where Zi,j,k
t is the dual process for the i-th bank correspondent to dual process Y i,j

t . Note that since we are having

N + 1 BM B0
t , ..., B

N
t , k can take values 0, 1, ..., N .

Now that we get the adjoint BSDE set up, it’s still necessary that we plug in the optimal control and the ansatz

in the state dynamics to get a coupled FSDE

dXi
t = [(a+ q)(Xt −Xi

t)− Y i,i
t ] dt+ σ[

√
1− ρ2 dBi

t + ρ dB0
t ] (664)

= (Xt −Xi
t)

[
a+ q −

(
1

N
− 1

)
ηt

]
dt+ σ[

√
1− ρ2 dBi

t + ρ dB0
t ] (665)

to conclude, the coupled FBSDE for this control problem is (already with ansatz plugged in)
dXi

t = (Xt −Xi
t)
[
a+ q −

(
1
N − 1

)
ηt
]
dt+ σ[

√
1− ρ2 dBi

t + ρ dB0
t ]

dY i,j
t =

(
1
N − δi,j

)
(Xt −Xi

t)
[
− 1

N

(
1
N − 1

)
η2t + (a+ q)ηt − (ε− q2)

]
dt+

∑N
k=0 Z

i,j,k
t dBk

t

Y i,j
T = c(XT −Xi

T )
(

1
N − δi,j

) (666)

note that for the i-th bank, we have N + 1 unknown processes Xi
t , Y

i,1
t , ..., Y i,N

t and N + 1 SDEs.

One canonical strategy to solve this FBSDE after plugging in the ansatz is to take derivative for the ansatz,

to plug in the FBSDE and to compare the coefficients with the BSDE. Let’s first take derivative w.r.t. t
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for the ansatz

dY i,j
t =

(
1

N
− δi,j

)
ηt d(Xt −Xi

t) +

(
1

N
− δi,j

)
(Xt −Xi

t)η
′
t dt (667)

it’s natural that we want to replace d(Xt −Xi
t) with the known state dynamics. In order to do this, let’s first take

the sum of dXi
t w.r.t. i to get

dXt = σ

[√
1− ρ2

1

N

n∑
k=1

dBk
t + ρ dB0

t

]
(668)

compute the difference dXt − dXi
t to see

d(Xt −Xi
t) = −(Xt −Xi

t)

[
a+ q −

(
1

N
− 1

)
ηt

]
dt+ σ

√
1− ρ2

[
1

N

n∑
k=1

dBk
t − dBi

t

]
(669)

therefore, we know that

dY i,j
t =

(
1

N
− δi,j

)
(Xt −Xi

t)

[
η′t −

(
1− 1

N

)
η2t − (a+ q)ηt

]
dt+ σ

√
1− ρ2ηt

(
1

N
− δi,j

) N∑
k=1

(
1

N
− δi,k

)
dBk

t

(670)

by comparing the coefficients with the BSDE, we immediately know that

Zi,j,0 = 0

Zi,j,k = σ
√

1− ρ2ηt
(

1
N − δi,j

) (
1
N − δi,k

)
(k = 1, 2, ..., N)

η′t =
(
1− 1

N2

)
η2t + 2(a+ q)ηt − (ε− q2)

ηT = c

(671)

one might verify that the process Zi,j,k is adapted and Zi,j,k ∈ H2 since it’s actually deterministic, and ηt satisfies

the same ODE with the same initial value condition as that in the HJB approach, so the result is actually the same.

For the verification step left over, note that by Pontryagin maximum principle we just have to check that gi is

convex in x and that the Hamiltonian Hi with Y,Z as the solution to the BSDE plugged in, is convex in (x, α). The

convexity of g is very easy to see from its Hessian matrix. On the other hand, fixing Y, Z in Hi, one will find that the

Hamiltonian is convex in (x, α) since the first part
∑N

k=1[a(x−xk)+αk]yi,k is linear in (x, α) and we have mentioned

that fi(x, α
i) is convex when q2 ≤ ε. So the sufficiency holds and now we see the reason we are requiring that

q2 ≤ ε.
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Open-loop Case: BSDE Approach

Now let’s derive the open-loop optimal control for the same problem using BSDE approach. Note that for the

open-loop case, the PDE approach deriving HJBE fails and Pontryagin maximum principle will be the most powerful

tool. The definition of open-loop control is that we are requiring that αt = αt(t,X0, B[0,t]). In other words,

the control taken at time t may depend on time, initial state and the value of all random noises from time 0 to t.

The difference from Markovian case lies in the fact that each agent now cannot observe all the agents’ state

evolution so feedback strategy is not allowed.

Of course, the reduced Hamiltonian for the i-th bank is still

Hi(t, x, α, yi,1, ..., yi,N ) =

N∑
k=1

[a(x− xk) + αk]yi,k + fi(x, α
i) (672)

and here we just take α1, ..., αN as independent variables since open loop NE provides no feedback effect.

Minimize Hi w.r.t. αi to get open loop NE

α̂i
t = q(x− xi)− yi,i (673)

and naturally it holds for all agents.

Note that now α̂k is not a function in (t, x) any longer, so the computation of ∂xjHi gets simpler (this is

actually the difference between open-loop and Markovian cases)

∂xjHi =

N∑
k=1

a

(
1

N
− δj,k

)
yi,k − qαi

(
1

N
− δi,j

)
+ ε(x− xi)

(
1

N
− δi,j

)
(674)

let’s plug in the optimal controls to get

∂xjHi =
a

N

N∑
k=1

(yi,k − yi,j) +

(
1

N
− δi,j

)
(ε− q2)(x− xi) + q

(
1

N
− δi,j

)
yi,i (675)

Now take the same ansatz as that in the Markovian case that Y i,j
t = ϕt

(
1
N − δi,j

)
(Xt −Xi

t) to find that

∂xjHi(t,Xt, α̂t, Y
i,1
t , ..., Y i,N

t ) = −
(

1

N
− δi,j

)
(Xt −Xi

t)

[
aϕt + q

(
1− 1

N

)
ϕt − (ε− q2)

]
(676)

so the adjoint BSDE is given bydY
i,j
t =

(
1
N − δi,j

)
(Xt −Xi

t)
[
aϕt + q

(
1− 1

N

)
ϕt − (ε− q2)

]
dt+

∑N
k=0 Z

i,j,k
t dBk

t

Y i,j
T = c(XT −Xi

T )
(

1
N − δi,j

) (677)

Now we get coupled FBSDE (the derivation of FSDE is exactly the same as that in the Markovian case, so
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we neglect all details here)
dXi

t = (Xt −Xi
t)
[
a+ q −

(
1
N − 1

)
ϕt
]
dt+ σ[

√
1− ρ2 dBi

t + ρ dB0
t ]

dY i,j
t =

(
1
N − δi,j

)
(Xt −Xi

t)
[
aϕt + q

(
1− 1

N

)
ϕt − (ε− q2)

]
dt+

∑N
k=0 Z

i,j,k
t dBk

t

Y i,j
T = c(XT −Xi

T )
(

1
N − δi,j

) (678)

which is a little bit different from that for the Markovian case. However, the trick applied to solve it is exactly the

same, by comparing the coefficients of the derivative of the ansatz with the BSDE, we get (refer to the Markovian

case for detailed calculations, exactly the same)

Zi,j,0 = 0

Zi,j,k = σ
√
1− ρ2ϕt

(
1
N − δi,j

) (
1
N − δi,k

)
(k = 1, 2, ..., N)

ϕ′t =
(
1− 1

N

)
ϕ2t + 2

[
a+ q

(
1− 1

2N

)]
ϕt − (ε− q2)

ϕT = c

(679)

one might verify that the process Zi,j,k is adapted and Zi,j,k ∈ H2 since it’s actually deterministic, and ϕt satisfies

the ODE with initial value condition. We won’t solve explicitly this Ricatti equation once more here, but it’s an easy

task since the ODE is separable in variables and we have already derived a general formula above for the integration

(in the PDE approach part).

The verification part is still all about convexity and are verified in the Markovian case, so sufficiency holds

and we are done. One extra thing to notice is that

α̂i
t =

[
q +

(
1− 1

N

)
ϕt

]
(Xt −Xi

t) (680)

the optimal control looks like a Markovian control. However, since we have the dynamics for Xt −Xi
t which is

d(Xt −Xi
t) = −(Xt −Xi

t)

[
a+ q −

(
1

N
− 1

)
ηt

]
dt+ σ

√
1− ρ2

[
1

N

n∑
k=1

dBk
t − dBi

t

]
(681)

we can solve out Xt − Xi
t and represent it as a function of X0 and B[0,t] (to see the explicit expression, since the

diffusion coefficient is constant, we can first ignore the diffusion term and then change the constant into a process to

solve this SDE).
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