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The notes are based on the materials from Introduction to Optimal Transport by Matthew Thorpe, Course Notes

on Computational Optimal Transport by Gabriel Peyré, and the optimal transport summer school organized by Matt

Jacobs and Nicholas Garcia Trillos.

Fundamentals of OT

Optimal matching of Point Clouds

The easiest form of OT is the optimal matching problem. Consider n points in the source space x1, ..., xn ∈ X

and the target space y1, ..., yn ∈ Y respectively. Given the cost matrix C ∈ Rn×n+ , whose entry Cij denotes the cost

of matching xi with yj . The objective is to look for a permutation σ : [n] → [n] that induces a bijective matching

xi → yσ(i) between those 2n points. The permutation shall be optimal in the sense of solving

min
σ

1

n

n∑
i=1

Ci,σ(i). (1)

Intuitively, x1, ..., xn can be understood as workers, y1, ..., yn can be understood as tasks, and Cij is the cost of letting

worker i do task j. One always hopes to find the best work assignment such that the total cost is minimized. Notice

that each worker can only take one task and each task can only be assigned to one worker. Obviously, the optimal

matching exists but is not unique (e.g., n = 2).

An important case would be X = Y = R and Ci,j = h(xi − yj) for strictly convex h ≥ 0, e.g. the power of a

norm. In this case, the optimal matching satisfies monotonicity condition:

∀(i, j), (xi − xj)(yσ(i) − yσ(j)) ≥ 0. (2)

To see why it is the case, we prove by contradiction and assume that index pair (i, j) violates the monotonicity

condition. Consider another permutation that switches the images of i, j under σ while preserving all other images:

σ̃(k) =


σ(k) k ̸= i, k ̸= j

σ(j) k = i

σ(i) k = j

. (3)

The strict convexity of h implies

h(xi − yσ(i))− h(xi − yσ(j))

yσ(j) − yσ(i)
>
h(xj − yσ(i))− h(xj − yσ(j))

yσ(j) − yσ(i)
, (4)
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which directly implies

n∑
k=1

Ck,σ̃(k) ≤
n∑
k=1

Ck,σ(k), (5)

meaning that σ̃ is a matching with lower cost. Intuitively, the penalty induced by a strictly convex h increases very

fast as two points gets farther away, resulting in the monotone behavior of the optimal matching. One might notice

that the monotonicity condition is so strong that it directly tells us what the optimal matching looks like. Consider

the sorting permutation σY such that yσ(1) ≤ ... ≤ yσ(n) and the similar sorting permutation σX for x1, ..., xn. The

optimal matching is given by

σ = σY ◦ σ−1
X . (6)

The optimal matching problem for cost matrices induced by strictly convex h reduces to sorting.

Remark. When h is concave, e.g., h(x, y) = −|x − y|2, consider points 1, 3, 5 ∈ X and 2, 4, 6 ∈ Y , the optimal

matching sends 1 to 6, 3 to 4 and 5 to 2. The optimal matching encourages a behavior that is totally different from

convex h, and it’s not a direct generalization of what we talked above.

For general cost matrix C without special structures, the solution is given by the Hungarian algorithm, whose

construction is based on the Kantorovich potentials.
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Monge Problem

The optimal matching problem is a special case of OT in the sense that µ = 1
n

∑n
i=1 δxi , ν = 1

n

∑n
i=1 δyi are

both empirical measures with the same number of probability masses. In general, the optimal transport problem is

provided in the Monge formulation, hoping to transport a measure µ to another measure ν.

Naturally, we first have to define what it means to ’transport’ between measures. For a mapping T : X → Y

telling us how each point in X is mapped to a point in Y , we are able to lift it as T# : P(X) → P(Y ) mapping a

measure on X to a measure on Y . T# is called the pushforward of T , and ν = T#µ iff

∀B ⊂ Y measurable, ν(B) = µ(T−1B). (7)

Equivalently,

∀h ∈ L1(ν),

∫
h(y) dν(y) =

∫
h(T (x)) dµ(x). (8)

T# linearizes any map T at the cost of moving from the original space to the space of measures on the original space.

Remark. Pushforwards often appear in probability theory. Consider random variable R : Ω → R on the probability

space (Ω,F ,P). The pushforward R# has action Q = R#P, where Q ∈ P(R) such that

∀B Borel,Q(B) = P(R ∈ B). (9)

It’s clear that Q = L (R) is the law of R.

Another example illustrates that pushforward is actually just the change of variables. Consider random variable

R ∼ µ, S ∼ ν, T#µ = ν iff

∀h ∈ L1(ν),Eh(S) = Eh(T (R)), (10)

which implies S
d
= T (R).

The Monge problem for given measures µ, ν and given cost function c : X × Y → R+ is given by:

inf
T

∫
c(x, T (x)) dµ(x) (11)

s.t. T#µ = ν. (12)

We are finding a transport map T that transports µ to ν. The map is optimal in the sense that the cost of

transportation along T is minimized. When µ, ν are both empirical measures with the same number of probability

masses, we recover the optimal matching problem.

Remark. In the language of probability, consider R ∼ µ, S ∼ ν, we want to find T subject to S
d
= T (R) that

minimizes Ec(R,S).
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The Monge formulation of optimal transport is problematic since such T might not exist, e.g., µ = δ0, ν =
1
2δ0 +

1
2δ1. Even if such T exists, the infimum might be unattainable. To gain insights into the Monge problem, we

consider two important cases: µ, ν are both discrete measures or µ, ν are both absolute continuous measures w.r.t.

the Lebesgue measure (density exists) in one dimension.

Firstly, in the discrete case

µ =

n∑
i=1

aiδxi , ν =

m∑
j=1

bjδyj . (13)

Whenever T#µ = ν,

∀j ∈ [m], bj =
∑

i:T (xi)=yj

ai. (14)

Such T must be surjective and the masses of µ can merge while the splitting of masses is prohibited, i.e., multiple ai

can be transported to a single bj but one ai cannot be transported to multiple bj . Obviously, when m > n (number

of target mass larger than number of source mass), such T does not exist. When m ≤ n, the compatibility condition

above still does not necessarily hold, e.g., µ has masses 1
4 ,

3
4 while ν has masses 1

2 ,
1
2 . A special case is when m = n

and both measures are empirical measures, in which case we have an optimal matching problem.

The case where µ, ν are both absolute continuous measures on R admits the existence of the optimal transport

map. The identification of the optimal transport map requires the following Brenier’s theorem (proved later).

Theorem 1 (Brenier). If X = Y = Rd, c(x, y) = |x−y|2, and µ is absolute continuous, there exists a unique optimal

transport map T . The map is characterized as T = ∇ϕ for convex ϕ such that T#µ = ν.

Remark. Brenier’s theorem can be extended to cost c(x, y) = h(x − y) where h ∈ C1 is strictly convex, e.g.,

c(x, y) = |x − y|p for p > 1. The norms are by default Euclidean norm. The transport map being the gradient of a

convex function implies the monotonicity of T , which aligns with the one in the optimal matching problem. However,

such ϕ generally lacks regularity and its gradient is defined in the almost everywhere sense (Rademacher’s theorem).

Returning to the absolute continuous case, we first try to find transport maps between µ and U(0, 1). Recall

the inverse CDF method for sampling, we consider the quantile of µ defined as

Qµ(r) := inf {x : Fµ(x) ≥ r} , (15)

where Fµ is the CDF of µ. Clearly, for U ∼ U(0, 1), Qµ(U) ∼ µ, which implies the following lemma:

Lemma 1. For any probability measure µ, (Qµ)#[U(0, 1)] = µ.

In particular, when µ is absolute continuous, Fµ is continuous and (Fµ)#µ = U(0, 1). Clearly,

(Qν ◦ Fµ)#µ = (Qν)#(Fµ)#µ = ν, (16)
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indicating that T = Qν ◦ Fµ transports µ to ν. Since T is increasing, it must be the gradient of a convex function,

and by Brenier’s theorem, such T must be the unique optimal transport map. As a result, whenever X = Y = R
and µ is absolute continuous, the optimal transport problem under cost c(x, y) = |x − y|2 is solved. This example

shows the power of Brenier’s theorem.

At last, we point out that Brenier’s theorem allows the derivation of the Monge-Ampere equation for optimal

transport. Assume the cost function c(x, y) = |x− y|2 (which will be the cost by default without specification), the

optimal transport map admits the representation T = ∇ϕ. Assume µ, ν are both absolute continuous with density

pµ, pν , then (∇ϕ)#µ = ν is equivalent to saying

∀h ∈ L1(ν),

∫
h(y)pν(y) dy =

∫
h(∇ϕ(x))pν(∇ϕ(x)) det(∇2ϕ(x)) dx =

∫
h(∇ϕ(x))pµ(x) dx, (17)

which implies the Monge-Ampere equation

pν(∇ϕ(x)) det(∇2ϕ(x)) = pµ(x). (18)

The solution ϕ characterizes the optimal transport map. Generally, Monge-Ampere equation has the form det(∇2u) =

f(x, u,∇u) and the equation above belongs to this class.

Remark. The term det(∇2ϕ) can be understood as the non-linear Laplacian. Consider the case X = Y , with a

trivial transport map T = id, clearly T = ∇ϕ, ϕ(x) = 1
2 |x|

2. We perturb ϕ by εψ to get ϕ̃(x) = 1
2 |x|

2 + εψ(x), such

that ∇ϕ̃(x) = x+ ε∇ψ(x). In this case, det(∇2ϕ̃) = det(I + ε∇2ψ). Using det(I + εA) = 1+ εTr(A) + o(ε) (ε→ 0),

we see that

det(∇2ϕ̃) = 1 + ε∆ψ + o(ε). (19)

When ϕ gets perturbed infinitesimally, the first order term in det(∇2ϕ) changes by the Laplacian of the perturbation.
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Example: OT for Gaussian

In the case where X = Y = R and µ = N(µ1, σ
2
1), ν = N(µ2, σ

2
2), one directly considers the CDF Fµ(x) =

Φ(x−µ1

σ1
), Fν(x) = Φ(x−µ2

σ2
) and the optimal transport map is given by the increasing map:

T (x) = F−1
ν ◦ Fµ(x) =

σ2
σ1

(x− µ1) + µ2. (20)

This is a linear map composed by translations and scalings, indicating that the best operation to take is to translate

µ by µ1 units (get N(0, σ2
1)), scale the variance (get N(0, σ2

2)), and translate back by µ2 units (get ν = N(µ2, σ
2
2)).

Generally, if X = Y = Rd, OT becomes hard for general distributions but is easy for Gaussians. Assume

µ = N(µ1,Σ1), ν = N(µ2,Σ2). We start from the one-dimensional analogue of the optimal transport map:

T (x) = A(x− µ1) + µ2. (21)

The translations are kept while the scaling part is replaced with A ∈ Rd×d since it still remains unclear how we shall

generalize σ2

σ1
in multi-dimensional cases. At this point, we shall think about matching the structure T = ∇ϕ for

convex ϕ in Brenier’s theorem. Clearly, such ϕ has the form

ϕ(x) =
1

2
(x− µ1)

TA(x− µ1) + µ2x. (22)

Notice that in order to make sure T = ∇ϕ, and ϕ is convex, A has to be a symmetric SPD matrix. Brenier’s theorem

enables us to put more restrictions on the matrix A.

The final step to determine A is to come back to the relationship T#µ = ν. The calculations can be carried out

using the Gaussian characteristic function. Assume R ∼ µ, S ∼ ν, the condition is saying T (R)
d
= S for some linear

transformation T . We use ϕR, ϕS to denote the characteristic functions respectively, then

ϕS(t) = ϕT (R)(t) = eit
Tµ2Eeit

TA(R−µ1) = eit
Tµ2−itTAµ1ϕR(A

T t) (23)

= eit
Tµ2−itTAµ1eit

TAµ1− 1
2 t

TAΣ1At = eit
Tµ2− 1

2 t
TAΣ1At. (24)

Comparing with ϕS(t) = eit
Tµ2− 1

2 t
TΣ2t yields the Riccati equation

AΣ1A = Σ2. (25)

This Ricatti equation can be solved easily by writing the LHS as a square of a matrix. For SPD matrix A, we use

A
1
2 to denote its unique square root matrix (still SPD and symmetric). As a result, Σ

1
2
1 AΣ

1
2
1 Σ

1
2
1 AΣ

1
2
1 = Σ

1
2
1 Σ2Σ

1
2
1 ,

which implies Σ
1
2
1 AΣ

1
2
1 = (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2 , so

A = Σ
− 1

2
1 (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2Σ

− 1
2

1 . (26)

provides the explicit formula of the optimal transport map.
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Kantorovich Relaxation

The Monge formulation of OT problem is problematic since it does not allow the splitting of probability masses,

e.g., any pushforward of a Dirac point mass must still be a Dirac point mass. The Kantorovich relaxation relaxes the

Monge problem by allowing masses to split freely as long as the marginals match the source and target measures.

The problem is now given by

inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y), (27)

where Π(µ, ν) = {π ∈ P(X × Y ) : π has two marginals µ, ν} is the set of couplings. In other words, by considering

the joint distribution, we allow a ’probabilistic’ transportation instead of the ’deterministic’ transportation induced

by T . Such π is called a coupling or a transport plan, which differs from the transport map.

Remark. Consider µ = δ0, ν = 1
2δ0 +

1
2δ1, then a legal coupling can be given by π, which assigns probability mass 1

2

to (0, 0) and probability mass 1
2 to (0, 1). The existence of coupling is always guaranteed since the product measure

π = µ⊗ ν is a trivial coupling, so one at least does not need to worry about the constraint.

The following theorem shows that the infimum in the Kantorovich relaxation is always attainable given that the

spaces X,Y and the cost c are not too wild.

Theorem 2. If X,Y are Polish spaces (by default) and c : X × Y → R+ is l.s.c. (lower semi-continuous), then

there exists an optimal coupling π ∈ Π(µ, ν) that attains the infimum.

Proof. By the inner regularity of Radon measures, ∀δ > 0, there always exists compact K ⊂ X,L ⊂ Y such that

for ∀π ∈ Π(µ, ν), π(X × Y − K × L) ≤ 2δ. This proves the tightness of Π(µ, ν) and by Prokhorov’s theorem,

it’s sequentially compact under the weak* topology (under which the convergence is the weak convergence of mea-

sures/convergence in distribution).

Let there be a minimizing sequence πn of the Kantorovich relaxation. The sequential compactness identifies the

weak* limit π∗. Since Π(µ, ν) is weak* closed (prove by definition), π∗ ∈ Π(µ, ν). Followed by l.s.c. and Portmanteau

theorem,

lim
n→∞

∫
c(x, y) dπn(x, y) ≥

∫
c(x, y) dπ∗(x, y) (28)

concludes the proof.

After arguing the well-posedness of the problem, we return to solving the Kantorovich relaxation. Surprisingly,

the objective is a linear function in π and so does the constraint, so this problem is actually a linear programming

problem on the space of measures. Let’s consider the case of transporting two discrete measures, as is often the case

in practical applications µ =
∑n
i=1 aiδxi , ν =

∑m
j=1 bjδyj . The coupling π now reduces to a matrix P ∈ Rn×m+ with

Pij denoting the amount transporting from xi to yj . The conservation of masses requires

P 1⃗ = a, PT 1⃗ = b. (29)
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The optimization problem is rewritten as

min
P

Tr(PTC) (30)

s.t. P ∈ Rn×m+ , P 1⃗ = a, PT 1⃗ = b. (31)

The LP (linear programming) structure is obvious.

Lastly, we have to make sure that whenever Monge problem has a solution, Kantorovich relaxation always

provides exactly the same solution as Monge problem. Whenever T#µ = ν in Monge problem, π = (id, T )#µ is always

a coupling. By definition, ∀h ∈ L1(π),
∫
h(x, y) dπ(x, y) =

∫
h(x, T (x)) dµ(x). If h = h(x) has no dependence on y,∫

h(x) d(P1)#π(x) =
∫
h(x, T (x)) dµ(x) proves (P1)#π = µ (here P1(x, y) = x is the projection so (P1)#π is the first

marginal of π). Similarly, if h = h(y) has no dependence on x,
∫
h(y) d(P2)#π(y) =

∫
h(T (x)) dµ(x) =

∫
h(y) dν(y)

since T#µ = ν. This proves (P2)#π = ν. As a result, π = (id, T )#µ ∈ Π(µ, ν).

We have argued that a transport map is a special case of the transport plan, but have not yet proved that an

optimal transport plan π∗ will degenerate to (id, T ∗)#µ, which is induced by the optimal transport map T if Monge

problem admits a solution. For simplicity, we provide the proof only for µ, ν being empirical measures (with the

same number of masses and equal splitting of masses). In other words, µ =
∑n
i=1 δxi , ν =

∑n
j=1 δyj . In this case,

Monge problem degenerates to optimal matching, in which the existence of the optimal transport map is guaranteed.

The Kantorovich relaxation is:

min
P

Tr(PTC) (32)

s.t. P ∈ Bn, (33)

where Bn is the collection of all bistochastic matrices (non-negative entries with each row and column adds up to

1). On the other hand, any feasible transport map in the Monge problem must be induced by a permutation σ on

[n] so it can be written as a permutation matrix P such that Pij = 1 iff j = σ(i) and otherwise zero. Denote the

collection of all permutation matrices as Pn, so the Monge problem is actually

min
P

Tr(PTC) (34)

s.t. P ∈ Pn. (35)

It remains to prove that those two optimization problems have the same optimizer. Clearly, Pn ⊂ Bn. It turns out

that the connection between Pn and Bn is given by the following theorem.

Theorem 3 (Birkhoff, Von Neumann). Denote Extr(C ) as the collection of extremal points of a convex set C . The

extremal points of C are the points in C that does not admit an nontrivial convex representation using other points

in C . Then

Extr(Bn) = Pn. (36)

9
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Proof. If P ∈ Bn − Pn, consider the bipartite graph induced by P (edge (i, j) exists iff Pij > 0), which must have

a cycle of the shortest length. Using the indices in the cycle, one can always construct two matrices in Bn distinct

from P , whose convex representation provides P .

The following lemma exploits the LP structure of OT problems.

Lemma 2. If C is a compact convex set, then

Extr(C ) ∩ argmin
P∈C

Tr(PTC) ̸= ∅, (37)

meaning that there exists a minimizer as an extremal point at the same time.

Proof. Let S := argminP∈C Tr(PTC) for given cost C. S is a compact convex set, by Krein-Milman theorem,

Extr(S) ̸= ∅. It remains to prove Extr(S) ⊂ Extr(C ) (which does not necessarily hold for S ⊂ C ).

For ∀P ∈ Extr(S), for any A,B ∈ C such that P = θA + (1 − θ)B for some θ ∈ [0, 1], we have Tr(PTC) ≤
Tr(ATC),Tr(PTC) ≤ Tr(BTC). The linearity of trace implies Tr(PTC) = Tr(ATC) = Tr(BTC) so A,B ∈ S. Since

P ∈ Extr(S), A = B = P . This proves that P ∈ Extr(C ).

Combining two conclusions by specifying C = Bn, we get

Pn ∩ argmin
P∈Bn

Tr(PTC) ̸= ∅, (38)

which proves that there exists a matrix P ∈ Pn (transport map) that also works as a minimizer of the Kantorovich

relaxation. This proves that for empirical measures, Kantorovich and Monge formulations provide the same optimizer.

Remark. Inspired by the proof of the Birkhoff-VNM theorem, since the bipartite graph induced by the optimal P

shall be cycle-free, the optimal P has at most n+m− 1 non-zero entries for general discrete measures.
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Wasserstein Distance

The Kantorovich relaxation ensures the existence of the optimal coupling between any pair of measures. Natu-

rally, the optimal transport cost measures the effort one has pay transporting one measure to another, which measures

the difference between two measures. In general, one considers the case where X = Y and takes c(x, y) = [d(x, y)]p

for some distance d on X. The optimal transport cost under Kantorovich formulation is defined as the power of the

p-Wasserstein distance.

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
[d(x, y)]p dπ(x, y)

) 1
p

, 1 ≤ p <∞. (39)

We first prove that p-Wasserstein distance is actually a distance in the mathematical sense. If µ = ν, consider

π as a measure supported on the diagonal ∆ = {(x, x) : x ∈ X} with the first marginal as µ. It’s obvious that

∀h(x, y) = h(y),

∫
h(y) d(P2)#π(y) =

∫
h(x, y) dπ(x, y) =

∫
h(x, x) dµ(x) =

∫
h(x) dµ(x). (40)

So (P2)#π = µ = ν, π ∈ Π(µ, ν). Of course
∫
[d(x, y)]p dπ(x, y) =

∫
[d(x, x)]p dπ(x, y) = 0.

Conversely, if Wp(µ, ν) = 0, then ∃π∗ ∈ Π(µ, ν),
∫
[d(x, y)]p dπ∗(x, y) = 0 (inf attainable). This implies π∗ is

supported on the diagonal ∆ due to the positivity of d as a metric. As a result,

∀h,
∫
h(y, y) dν(y) =

∫
h(y, y) dπ∗(x, y) =

∫
h(x, y) dπ∗(x, y) =

∫
h(x, x) dπ∗(x, y) =

∫
h(x, x) dµ(x) (41)

proves µ = ν.

For any π ∈ Π(µ, ν), consider the map that interchanges components S(x, y) = (y, x). Let’s check that S#π ∈
Π(ν, µ). Clearly, (P1)#S#π = (P2)#π = ν and (P2)#S#π = (P1)#π = µ. In addition, applying S# does not change

the transport cost. ∫
[d(x, y)]p dS#π(x, y) =

∫
[d(y, x)]p dπ(x, y) =

∫
[d(x, y)]p dπ(x, y) (42)

It’s clear that we have proved Wp(µ, ν) =Wp(ν, µ).

The triangle inequality requires more efforts. The difficulty lies in connecting three measures µ, ν, η with two

couplings, so we have to refer to the following gluing lemma.

Lemma 3. Let µ ∈ P(X), ν ∈ P(Y ), η ∈ P(Z) be three measures on the Polish spaces, given π ∈ Π(µ, ν), ξ ∈
Π(ν, η), there exists σ ∈ P(X × Y × Z) such that (P1,2)#σ = π, (P2,3)#σ = ξ.

Proof. Using the disintegration theorem (regular conditional probability), there exists families of measures {πy}y∈Y ⊂
P(X) (conditional probability measure of π given y ∈ Y ), {ξy}y∈Y ⊂ P(Z) (conditional probability measure of ξ

11
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given y ∈ Y ). Those conditional measures are identified through∫ (∫
h(x, y) dπy(x)

)
dν(y) =

∫
h(x, y) dπ(x, y), (43)∫ (∫

h(y, z) dξy(z)

)
dν(y) =

∫
h(y, z) dξ(y, z). (44)

One can check that σ(x, y, z) = πy(x)ξy(z)ν(y) provides the construction.

Returning to prove the triangle inequality, given µ, ν, η, we identify optimal couplings π ∈ Π(µ, ν), ξ ∈ Π(ν, η)

that attains the infimum inWp(µ, ν),Wp(ν, η) respectively. By the gluing lemma, there exists σ such that (P1,2)#σ =

π, (P2,3)#σ = ξ. Since σ has three marginals as µ, ν, η, we take out the marginals w.r.t. the first and third component

ζ = (P1,3)#σ ∈ Π(µ, η) as the coupling.

Wp(µ, η) ≤
(∫

[d(x, z)]p dζ(x, z)

) 1
p

=

(∫
[d(x, z)]p dσ(x, y, z)

) 1
p

(45)

≤
(∫

[d(x, y) + d(y, z)]p dσ(x, y, z)

) 1
p

(46)

≤
(∫

[d(x, y)]p dσ(x, y, z)

) 1
p

+

(∫
[d(y, z)]p dσ(x, y, z)

) 1
p

(Minkowski) (47)

=

(∫
[d(x, y)]p dπ(x, y)

) 1
p

+

(∫
[d(y, z)]p dξ(y, z)

) 1
p

(48)

=Wp(µ, ν) +Wp(ν, η). (49)

The p-Wasserstein distance between any two measures is always finite (unlike KL divergence), with a physical

meaning of the transportation cost. This motivates the research of the Wasserstein geometry and relevant applications

as a natural analogue to the finite-dimensional Euclidean spaces.

12
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Example: Wasserstein Distance

When X = Y = R, the optimal transport map is given by T = Qν ◦Fµ, which is also the optimal transport plan

given cost function c(x, y) = |x− y|p. Plugging into the definition of the p-Wasserstein distance to get

Wp(µ, ν) =

(∫ 1

0

|Qµ(x)−Qν(x)|p dx
) 1

p

= ∥Qµ −Qν∥Lp([0,1]). (50)

Simply speaking, on R, through the mapping µ 7→ Qµ, the Wasserstein distance is isometric to the Lp distance. In

particular, let’s check what happens when p = 1.

W1(µ, ν) =

∫ 1

0

|Qµ(x)−Qν(x)| dx =

∫ 1

0

∫ Qµ(x)∨Qν(x)

Qµ(x)∧Qν(x)

dy dx (51)

=

∫
R

∫ Fµ(y)∨Fν(y)

Fµ(y)∧Fν(y)

dx dy =

∫
R
|Fµ(y)− Fν(y)| dy. (52)

The 1-Wasserstein distance is just the area of the difference under the CDF curves.

For X = Y = Rd and Gaussian µ = N(µ1,Σ1), ν = N(µ2,Σ2), we have also derived the optimal transport map

T (x) = A(x − µ1) + µ2 where A = Σ
− 1

2
1 (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2Σ

− 1
2

1 . It turns out that when p = 2, the Wasserstein distance

admits a simple representation:

W2(µ, ν) =

√∫
|x− T (x)|2 pµ(x) dx (53)

=
√
Ex∼µ∥(I −A)x− (µ2 −Aµ1)∥2 (54)

=

√
|µ1 − µ2|2 +Tr(Σ1 +Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2 ) (55)

=:
√
|µ1 − µ2|2 +DB(Σ1,Σ2)2. (56)

Within the calculations, we use the fact that (I −A)x ∼ N((I −A)µ1, (I −A)Σ1(I −A)) and that if y ∼ N(µy,Σy),

then E|y|2 = Tr(Σy) + |µy|2. Due to the important structure of the 2-Wasserstein distance of Gaussians, we denote

the trace term as the square of DB(Σ1,Σ2), which is the Bures metric, a distance on the space of symmetric SPD

matrices, e.g., covariance matrices. In this sense, W 2
2 is the sum of the squared Euclidean distance between mean

vectors and the squared Bures distance between covariance matrices. Hence, the 2-Wasserstein distance can be

understood as an analogue of the Euclidean distance on the space of measures.

To dig a little deeper into the Bures metric (which also has backgrounds in quantum computing), we provide a

proof showing that it’s indeed a metric, which is untrivial at the first glance.

Lemma 4. For Hermitian matrices A,B,

DB(A,B) = min
M∈F (A),N∈F (B)

∥M −N∥F = min
U∈U(n)

∥A 1
2 −B

1
2U∥F , (57)

13
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where F (A) := {M ∈ Cn×n : A =MM∗}, and U(n) := {U ∈ Cn×n : UU∗ = U∗U = I}.

Proof. By splitting two terms in the norm,

min
U∈U(n)

∥A 1
2 −B

1
2U∥F = Tr(A) + Tr(B)− max

U∈U(n)
Tr(U∗B

1
2A

1
2 +A

1
2B

1
2U). (58)

Consider the polar decomposition B
1
2A

1
2 = V P , where V is unitary and P = (A

1
2BA

1
2 )

1
2 ≥ 0.

Tr(U∗B
1
2A

1
2 +A

1
2B

1
2U) = Tr(U∗V P + PV ∗U) (59)

= Tr[(U∗V + V ∗U)P ] (60)

=

n∑
j=1

2 cos θjPjj . (61)

The last equation follows from selecting a basis that diagonalizes U∗V . Since it’s unitary, the diagonal entries can

be written as eiθ1 , ..., eiθn . Clearly, the maximum is attained when θ1 = ... = θn = 0, i.e., U = V . It follows that

max
U∈U(n)

Tr(U∗B
1
2A

1
2 +A

1
2B

1
2U) = 2Tr(P ), (62)

which concludes the proof of the last expression.

For the middle one, notice that A =MM∗ = NN∗ iff M and N differs by a unitary matrix. Since A = A
1
2A

1
2 ,

any matrix in F (A) differs from A
1
2 by a unitary matrix, which concludes the proof.

From this lemma, it’s obvious that Bures metric is positive and symmetric. For the triangle inequality,

∀U, V ∈ U(n), DB(A,C) ≤ ∥A 1
2 − C

1
2U∥F ≤ ∥A 1

2 −B
1
2V ∥F + ∥B 1

2V − C
1
2U∥F . (63)

Take minimum on both sides w.r.t. U, V ∈ U(n) to conclude.

Remark. Consider the trivial case where Σ1 is diagonal with diagonal elements a1, ..., ad and Σ2 is diagonal with

diagonal elements b1, ..., bd. Then the Bures metric equals

DB(Σ1,Σ2) =

d∑
i=1

(
√
ai −

√
bi)

2, (64)

which is the Hellinger square distance in information theory.

14
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Wasserstein Topology

The topology induced by the Wasserstein distance is worth mentioning. Firstly, we prove the lemma indicating

the relationship between p-Wasserstein distances when p varies.

Lemma 5. For 1 ≤ p ≤ q, Wp(µ, ν) ≤ Wq(µ, ν) ≤ diam(X)
q−p
q W

p
q
p (µ, ν), where diam(X) = supx,y∈X d(x, y) is the

diameter of the source space.

Proof. W q
q is essentially an expectation when the optimal coupling πq is given. By Jensen’s inequality applied for

convex function x 7→ x
q
p ,

W q
p (µ, ν) =

(∫
[d(x, y)]p dπq(x, y)

) q
p

≤
∫

[d(x, y)]q dπq(x, y) =W q
q (µ, ν). (65)

For the second inequality follows from

W q
q (µ, ν) ≤

∫
[d(x, y)]q dπp(x, y) ≤ diam(X)q−p

∫
[d(x, y)]p dπp(x, y) = diam(X)q−pW p

p (µ, ν). (66)

This is saying that when X is bounded, all Wp defines equivalent topology. However, we note that Wp are not

strongly equivalent (∃C1, C2 > 0,∀µ, ν, C1Wp(µ, ν) ≤ Wq(µ, ν) ≤ C2Wp(µ, ν)) even when X is bounded. A simple

counterexample would be

X = [0, 1], µ = δ0, νn =

(
1− 1

n

)
δ0 +

1

n
δ 1

n
. (67)

It’s clear that Wp(µ, νn) = n−(1+ 1
p ) → 0 (n → ∞), so

Wq(µ,νn)
Wp(µ,νn)

→ ∞ (n → ∞) if q ≥ p, which contradicts with the

existence of the constant C2.

When we discuss the topology on the space of measures, the strong topology is typically taken as the one

induced by the total variation:

TV(µ, ν) :=
1

2
sup

∥f∥∞≤1

∫
f d(µ− ν). (68)

Actually, the total variation distance can also be seen as a Wasserstein distance under a trivial metric d̃.

Lemma 6. Consider the trivial distance d̃(x, y) = Ix ̸=y, then W d̃
1 (µ, ν) = TV(µ, ν), i.e. total variation is the

1-Wasserstein distance under d̃.

Proof. By the variational characterization of total variation distance,

TV(µ, ν) = min
X∼µ,Y∼ν

P (X ̸= Y ) . (69)
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If one finds trouble proving this equality, check that the total variation coupling

π(x, y) =

µ(x) ∧ ν(y) if x = y

[(µ(x)−ν(x))∨0]·[(ν(y)−µ(y))∨0]
TV(µ,ν) if x ̸= y

∈ Π(µ, ν) (70)

attains the minimum. Notice that Ed̃(X,Y ) = P (X ̸= Y ) concludes the proof.

We are not satisfied with the strong topology induced by the total variation distance on the space of measures

since the notion of convergence is too strong to be of our interest. Consider a sequence of distinct Dirac point masses

δxn such that xn → x (n → ∞). Clearly, under the notion of convergence in distribution, δxn

d→ δx. However, this

is not the case under the strong topology since

∀n,TV(δxn , δx) = 1. (71)

On the other hand, if we equip the space of measures with the weak* topology induced by the p-Wasserstein

distance (by default c(x, y) = |x− y|p), then

Wp(δxn
, δx) = |xn − x| → 0 (n→ ∞). (72)

There seems to be a connection between the Wasserstein topology and the convergence in distribution of measures.

Before entering into that, we first prove that, as a special case, when X is discrete, two topologies coincide.

Lemma 7. When X is discrete under metric d, i.e. dmin := infx,y∈X d(x, y) < ∞, dmax := supx,y∈X d(x, y) < ∞,

then the strong topology and the weak topology (induced by Wp for any p ≥ 1) are equivalent.

Proof. Followed from the trivial estimate

∀x, y ∈ X, dmin · d̃(x, y) ≤ d(x, y) ≤ dmax · d̃(x, y), (73)

and the total variation distance as a Wasserstein distance,

dmin · TV(µ, ν) ≤W1(µ, ν) ≤ dmax · TV(µ, ν). (74)

Since the topology induced by Wp distance are equivalent for ∀p ≥ 1 when dmax <∞, the topology induced by any

Wp distance is equivalent to the strong topology on a discrete space.

It turns out that on a compact set X ⊂ Rd, the notion of convergence under the topology induced by Wp aligns

with the convergence in distribution.

Theorem 4. If X ⊂ Rd is compact, then µn
d→ µ (n→ ∞) iff Wp(µn, µ) → 0 (n→ ∞).

Proof. X is bounded so it suffices to prove for p = 1. Here we have to use the Kantorovich-Rubinstein theorem
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providing a characterization of the W1 distance:

W1(µ, ν) = sup
φ

∫
φd(µ− ν), (75)

where the supreme is taken among all φ that are 1-Lipschitz. We will skip the proof for now and come back to it

when talking about the Kantorovich duality.

If W1(µn, µ) → 0, then for any Lipschitz f with Lipschitz constant Lf ,

1

Lf

∫
f d(µn − µ) ≤W1(µn, µ) → 0. (76)

By Portmanteau theorem recognizing all Lipschitz functions as test functions, µn
d→ µ.

Conversely, if µn
d→ µ, there exists subsequence {mk} and a sequence of 1-Lipschitz functions {φmk

} such that

W1(µmk
, µ) ≤

∫
φmk

d(µmk
− µ) +

1

k
, W1(µmk

, µ) → lim sup
n→∞

W1(µn, µ) (k → ∞). (77)

The sequence of functions is uniformly equicontinuous and uniformly bounded. Arzela-Ascoli theorem identifies a

uniform limit φ of a further subsequence of {φmk
}.

lim sup
n→∞

W1(µn, µ) ≤ lim sup
k→∞

∫
(φmk

− φ) dµmk
+

∫
φd(µmk

− µ) +

∫
(φ− φmk

) dµ+
1

k
= 0 (78)

by the uniform convergence and W1(µn, µ) → 0.

Remark. When it comes to the whole Euclidean space X = Rd, we have that W1(µn, µ) → 0 iff µn
d→ µ and∫

|x|p dµn →
∫
|x|p dµ. Besides the convergence in distribution, one also requires the convergence of the p-th moment.

The proof projects µn onto a compact set with small changes in the Wasserstein distance and uses the theorem above.

Note that the convergence of the p-th moment is necessary. Consider counterexample: µn = (1− 1
n )δ0+

1
nδn

d→ µ = δ0,

but µn has mean 1 while µ has mean 0. This leads to W1(µn, µ) = 1 ̸→ 0.

From probability theory, it’s clear that the topology induced by Levy-Prokhorov metric aligns with the conver-

gence in distribution. As a result, on compact X ⊂ Rd, the Wasserstein topology is equivalent to the Levy-Prokhorov

topology, although both have different motivations.
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Kantorovich Duality

When numerically solving the Kantorovich problem, it’s hard to start with the primal problem:

inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y) (79)

due to the characterization of the coupling. Instead, one considers the dual problem and approximates the Kan-

torovich potentials. We first heuristically derive the dual problem and then talk about how to prove relevant results.

In the context of optimization, the dual problem refers to the one concerning the Lagrange dual function. The

Kantorovich problem is an LP with linear constraints (P1)#π = µ, (P2)#π = ν. It seems hard to write down the

Lagrange multiplier function since our optimizer is a measure. However, inspired by the Riesz–Markov–Kakutani

representation theorem, the Lanrange multipliers shall be denoted as two integrable functions φ : X → R, ψ : Y → R
such that ⟨φ, µ⟩ :=

∫
φdµ, ⟨ψ, ν⟩ :=

∫
ψ dν are defined. In this sense, we write down the Lagrangian:

Q(π, φ, ψ) =

∫
c(x, y) dπ(x, y) + ⟨φ, µ− (P1)#π⟩+ ⟨ψ, ν − (P2)#π⟩ . (80)

The dual function is defined as:

J(φ,ψ) = inf
π
Q(π, φ, ψ) (81)

=

∫
φ(x) dµ(x) +

∫
ψ(y) dν(y) + inf

π

{∫
[c(x, y)− φ(x)− ψ(y)] dπ(x, y)

}
(82)

=


∫
φ(x) dµ(x) +

∫
ψ(y) dν(y) if c(x, y) ≥ φ(x) + ψ(y)

−∞ else
. (83)

As a result, we derived the Kantorovich dual problem:

sup
φ,ψ

J(φ,ψ) :=

∫
φdµ+

∫
ψ dν, (84)

s.t. φ(x) + ψ(y) ≤ c(x, y). (85)

Due to the LP nature of the primal problem, it’s not surprising at all that strong duality holds, i.e. the primal

and the dual problem has the same optimal value of the objective function. This is called the Kantorovich duality

and φ,ψ are called Kantorovich potentials.

Due to optimization theory, the weak duality always holds, i.e. the optimal objective value of the dual is always

less than the optimal objective value of the primal. The difficulty lies in proving the converse. In this situation, we

need to borrow tools from the optimization theory, known as the Fenchel-Rockafeller duality.

Theorem 5 (Fenchel-Rockafeller Duality). E is a normed vector space, with Θ,Σ : E → R ∪ {∞} to be convex
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functions. Assume that ∃z0 ∈ E,Θ(z0) <∞,Σ(z0) <∞ and Θ is continuous at z0, then

inf
z∈E

{Θ(z) + Σ(z)} = max
z∗∈E∗

{−Θ∗(−z∗)− Σ∗(z∗)} , (86)

where Θ∗,Σ∗ : E∗ → R ∪ {∞} are Fenchel conjugates. Moreover, the maximum on the RHS can be attained.

Proof. The proof can be found everywhere so we only provide a sketch. Let A := epi(Θ), B := hypo(M − Σ) ⊂
E × R where M := infz∈E {Θ(z) + Σ(z)}. Both sets are convex and non-empty so there exists a hyperplane H =

{(x, t) ∈ E × R : f(x) + kt = α, f ∈ E∗} that separates the disjoint convex open set C = A◦ and convex B. Prove

that k ̸= 0 (the hyperplane is not parallel to the last dimension), which implies that z∗ = f
k attains the maximum

on the RHS.

At this point, we provide the proof of the Kantorovich duality.

Theorem 6 (Kantorovich Duality). For Polish spaces X,Y and l.s.c. cost c,

inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y) = sup

φ(x)+ψ(y)≤c(x,y)

∫
φdµ+

∫
ψ dν. (87)

Proof. One side of the inequality is obvious due to weak duality. We only prove that the RHS is larger than the LHS.

For simplicity, we only prove for compactX,Y and continuous c (can be relaxed, needed for the Riesz–Markov–Kakutani

representation theorem to hold such that the Fenchel conjugates have simple forms).

In this case, E = Cc(X × Y ) is equipped with the sup norm, consider convex functions

Θ(u) =

0 if u(x, y) ≥ −c(x, y)

+∞ else
, Σ(u) =


∫
φdµ+

∫
ψ dν if u(x, y) = φ(x) + ψ(y)

+∞ else
. (88)

Compute the Fenchel conjugates on the collection of all Radon measures E∗ = M (X × Y ):

Θ∗(−π) =


∫
c(x, y) dπ(x, y) if π ∈ M+(X × Y ) (positive)

+∞ else
,Σ∗(π) =

0 if π ∈ Π(µ, ν)

+∞ else
(89)

The Fenchel-Rockafeller duality concludes the proof.

Remark. As a corollary of the Fenchel-Rockafeller duality, the infimum in the primal Kantorovich problem is always

attained. Actually, the supreme in the dual problem is also always attained. The proof uses the c-transform which

will be mentioned in the later context.

By the complementary slackness, if one solves the optimal φ∗, ψ∗, the optimal coupling is given by

π∗(x, y) > 0 ⇔ c(x, y) = φ∗(x) + ψ∗(y). (90)

19



OT notes written by Haosheng Zhou CONTENTS

Kantorovich-Rubinstein Theorem

Here we provide the proof of the Kantorovich-Rubinstein theorem that provides a useful characterization of the

W1 distance corresponding to the Euclidean distance d(x, y) = |x− y|.

Theorem 7 (Kantorovich-Rubinstein Theorem). For any µ, ν,

W1(µ, ν) = sup
f

∫
f d(µ− ν), (91)

where the supreme is taken among all f that are 1-Lipschitz. The supreme is attained by f = ψc, where

ψc(x) := inf
y∈Y

{c(x, y)− ψ(y)} (92)

is defined as the c-transform of ψ (in this case c(x, y) = |x− y|).

Proof. By Kantorovich duality,

W1(µ, ν) = sup
φ(x)+ψ(y)≤|x−y|

∫
φdµ+

∫
ψ dν. (93)

We denote by |φ|L the Lipschitz constant of function φ. Setting φ = −ψ, |φ|L ≤ 1 to see that

W1(µ, ν) ≥ sup
|φ|L≤1

∫
φd(µ− ν). (94)

To prove the inequality in the other direction, we only need to check that the supreme can be attained.

Consider ψc:

∀x, x′ ∈ X,∀y ∈ Y, ψc(x) ≤ |x− y| − ψ(y) ≤ |x− x′|+ |y − x′| − ψ(y). (95)

Taking infimum on both sides w.r.t. y ∈ Y proves ψc(x) ≤ |x − x′| + ψc(x′), and exchanging x, x′ proves the

1-Lipschitz property. Now we check that

∀ φ(x) + ψ(y) ≤ |x− y|,
∫
φdµ+

∫
ψ dν ≤

∫
ψc d(µ− ν). (96)

since φ ≤ ψc while ψc ≤ −ψ (set y = x in the definition). Combining those inequalities yields

W1(µ, ν) ≤ sup
|f |L≤1

∫
f d(µ− ν) ≤W1(µ, ν), (97)

which proves the theorem and also we see that the supreme is attained by f = ψc.
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Wasserstein Geometry and Multimarginal OT (MMOT)

When considering the definition of a line segment in the Wasserstein space between µ0 and µ1, there are two

natural formulations. The first one is called the interpolation of metric, i.e., the line segment is determined by

minimizing the interpolated distance

µt := argmin
µ

{
(1− t)W 2

2 (µ, µ0) + tW 2
2 (µ, µ1)

}
, t ∈ [0, 1]. (98)

The second way is to follow the geodesic, i.e., given the optimal transport map T0,1 from µ0 to µ1, µt is derived by

directly interpolating the transport map:

µt := (tT0,1 + (1− t)id)#µ0. (99)

In the case of two measures, two formulations coincide.

Proof. We prove that the µt defined in the geodesic setting minimizes the optimization problem of the interpolated

metric.

(1− t)W 2
2 (µt, µ0) + tW 2

2 (µt, µ1) = t2(1− t)W 2
2 (µ0, µ1) + t(1− t)2W 2

2 (µ0, µ1) = t(1− t)W 2
2 (µ0, µ1). (100)

The first equation follows from the fact that W 2
2 (T#µ, µ) =

∫
|x− T (x)|2 dµ(x) so that

W 2
2 (µt, µ0) = t2

∫
|x− T0,1(x)|2 dµ0(x) = t2W 2

2 (µ1, µ0). (101)

By geometric mean-square mean inequality and the triangle inequality,

∀µ, t(1− t)W 2
2 (µ0, µ1) ≤ t(1− t)[W2(µ, µ0) +W2(µ, µ1)]

2 (102)

≤ (1− t)W 2
2 (µ, µ0) + tW 2

2 (µ, µ1). (103)

This concludes the proof.

Remark. In the two-measure case, computing µt for given t ∈ [0, 1] is an easy task. Notice that by Brenier’s theorem

T0,1 = ∇f for some convex f , so tT0,1 +(1− t)id = ∇g where g(x) = tf(x)+ 1−t
2 |x|2 is still the gradient of a convex

function. By Brenier’s theorem once again, tT0,1 + (1− t)id is actually the optimal transport map from µ0 to µt. In

this sense, after solving for T0,1 (a single OT problem), we have actually solved out all µt.

The consistency between the geodesic and metric interpolation formulations breaks when the number of measures

exceeds three. Consider µ0, µ1, µ2 and we wish to find a triangle in the Wasserstein space with those three vertices.

The geodesic formulation finds out optimal transport maps T0,1, T1,2, T0,2 and interpolates the transport maps, while

the metric interpolation formulation directly interpolates W 2
2 (µ, µ0),W

2
2 (µ, µ1),W

2
2 (µ, µ2). Consider three complex

numbers a = 1, b = ei
2
3π, c = ei

4
3π such that µ0 is uniform on {a, b}, µ1 is uniform on {b, c}, µ2 is uniform on {a, c}.

Under the metric interpolation formulation, the center of the triangle, i.e., argminµ
1
3W

2
2 (µ, µ0) +

1
3W

2
2 (µ, µ1) +
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1
3W

2
2 (µ, µ2), is invariant under any rotations with angle k 2

3π, k ∈ Z. Under the geodesic formulation, each point in

the triangle consists of a pair of disjoint points which does not exhibit the symmetry. Hence, although we have no

idea what those two triangles look like, they must not be the same set.

One practical concern when it comes to the Wasserstein geometry, is to find the ”center” of several given

measures. In the case of three given measures, we want to solve

min
µ

1

3
W 2

2 (µ, µ0) +
1

3
W 2

2 (µ, µ1) +
1

3
W 2

2 (µ, µ2). (104)

By Brenier’s theorem, we can write µ = (∇f)#µ0 for convex f but, unlike the two-measure case, this is not making

our life easier. We get the optimization problem

min
f convex

1

3

∫
|∇f(x)− x|2 dµ0(x) +

1

3
W 2

2 ((∇f)#µ0, µ1) +
1

3
W 2

2 ((∇f)#µ0, µ2). (105)

The latter two terms are generally not convex in ∇f , so the problem is an non-convex optimization in ∇f . In this

case, we shall do some transformations to the original problem by rewriting it as

min
µ

min
γ0,γ1,γ2,γi∈Π(µi,µ)

1

3

∑
i

∫
|x− y|2 dγi(x, y), (106)

explicitly specifying the transport maps used in the Wasserstein distances as γi. Then we merge the three constraints

on γi to a single constraint denoted as a multimarginal coupling

min
µ

min
γ∈Π(µ0,µ1,µ2,µ)

1

3

∑
i

∫
|xi − y|2 dγ(x0, x1, x2, y), (107)

where Π(µ0, µ1, µ2, µ) denotes the collection of probability measures on (Rd)4 with the corresponding marginals.

Notice that we are minimizing w.r.t. µ on the outer layer so we actually have the freedom of choosing µ when doing

the minimization. The problem reduces to

min
γ∈Π(µ0,µ1,µ2,·)

∫
(Rd)4

1

3

∑
i

|xi − y|2 dγ(x0, x1, x2, y). (108)

This is an instance of multimarginal optimal transport (MMOT) with cost c(x0, x1, x2, y) = 1
3

∑
i |xi − y|2 and it

once again becomes an LP problem (linear in γ).

MMOT are hard to solve numerically (even for 30 marginals) and little is known about if γ can be reduced to a

transport map, e.g., x1 7→ (x1, T1,2(x1), ..., T1,k(x1)) as a curve, or (x1, x2) 7→ (x1, x2, T1,2,3(x1, x2), ..., T1,2,k(x1, x2))

as a surface, etc.
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OT Numerics

There are two general algorithms for solving OT numerically. One is the back-and-forth method, which is fast

and accurate but only works for a small dimension d. The other is Sinkhorn, which works for large d, and one can

control the trade-off between efficiency and accuracy. Both algorithms start from the Kantorovich dual and tries

to learn the Kantorovich potentials. We first state the problem in the general setting without specifying the cost

c, but in specific context a c with special structure might be needed to simplify the methods. In OT numerics,

µ, ν are typically formed as empirical measures (observed samples from the measures) instead of complete absolute

continuous measures.

c-transform

In the proof of the Kantorovich-Rubinstein theorem, we have seen the power of the c-transform and here

we provide a more comprehensive introduction to prepare for the numerical methods. For Kantorovich potentials

φ : X → R, ψ : Y → R, the c-transforms φc : Y → R, ψc : X → R are defined as

φc(y) := inf
x∈X

{c(x, y)− φ(x)} , ψc(y) := inf
y∈Y

{c(x, y)− ψ(y)} . (109)

The Kantorovich dual maximizes
∫
φdµ +

∫
ψ dν under the constraint φ(x) + ψ(y) ≤ c(x, y), so the c-transform is

naturally defined based on the form of the constraint. As an immediate consequence,

φc ≥ ψ, ψc ≥ φ. (110)

As a result, we denote

J(φ) :=

∫
φdµ+

∫
φc dν, I(ψ) :=

∫
ψc dµ+

∫
ψ dν (111)

as two objective functions only in φ and ψ respectively. Clearly,

OT cost = sup
φ
J(φ) = sup

ψ
I(ψ) (112)

turns the dual problem into an unconstrainted optimization problem for only one of the Kantorovich potentials.

A clever investigation of the double c-transform shows that

φcc(x) = inf
y∈Y

{c(x, y)− φc(y)} = inf
y∈Y

{
c(x, y)− inf

z∈X
{c(z, y)− φ(z)}

}
(113)

= inf
y∈Y

sup
z∈X

{c(x, y)− c(z, y) + φ(z)} ≥ φ(x), (114)
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so φcc : X → R, ψcc : Y → R and

φcc ≥ φ, ψcc ≥ ψ. (115)

If one investigates the triple c-transform,

φccc(y) = inf
x∈X

{c(x, y)− φcc(x)} = inf
x∈X

sup
z∈Y

{c(x, y)− c(x, z) + φc(z)} ≥ φc(y). (116)

On the other hand,

φccc(y) = inf
x∈X

sup
z∈Y

{c(x, y)− c(x, z) + φc(z)} = inf
x∈X

sup
z∈Y

inf
w∈X

{c(x, y)− c(x, z) + c(w, z)− φ(w)} (117)

≤ inf
x∈X

{c(x, y)− φ(x)} (set w as x) = φc(y). (118)

This reveals the structure that

φccc = φc, ψccc = ψc. (119)

Essentially, the only nontrivial transforms are the single and double c-transform.

At this point, we find that replacing Kantorovich potentials with their double c-transforms increases the objective

values:

J(φcc) ≥ J(φ), I(ψcc) ≥ I(ψ). (120)

Unfortunately, this operation can only be used for once since J(φcccc) = J(φcc), and the devil lies in the property

φccc = φc. This puts up a challenge for designing OT numerics that one cannot simply assign ψ as φc and alternate

between two potentials. One shall realize that this failure is a natural consequence since the c-transform only contains

the cost c but contains no information of the two distributions µ, ν! If we have used no information of µ, ν, then we

definitely have no idea what the optimal transport map between them looks like.

Inspired by this observation, we realize that ”something” has to be done before/after assigning the c-transform

such that we can break the property φccc = φc and always make progress. This ”something” shall change the

potentials in a good direction and shall be based on the information of µ and ν. In the following context, we

introduce two algorithms with different motivations. The back-and-forth algorithms does a gradient step before

applying the c-transform, while the Sinkhorn algorithm changes the notion of c-transform such that φccc = φc no

longer holds.
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Back-and-Forth

The motivation of back-and-forth is to do gradient update for learning the potentials. Let’s first focus on learning

φ, which requires the functional derivative of J(φ) w.r.t. φ. We first calculate the first variation of J(φ) w.r.t. φ,

denoted as δJ(φ)(u) := limt→0
J(φ+tu)−J(φ)

t in the Gateaux sense.

δJ(φ)(u) =

∫
u dµ+ lim

t→0

∫
(φ+ tu)c − φc dν

t
(121)

=

∫
u dµ−

∫
u(Tφ(y)) dν(y), (122)

where Tφ(y) := argminx∈X {c(x, y)− φ(x)} is the value of x that attains the infimum in φc(y). Notice that this

calculation holds for c(x, y) = h(x − y) where h is strictly convex. Heuristically, the infimum in (φ + tu)c is also

attained at x = Tφ(y) and the perturbation in the minimizer results in an negligible higher-order term.

Remark. The first variation provides insights to OT problems. It’s clear that if φ∗ ∈ argminφ J(φ), then ∀u, δJ(φ∗)(u) =

0, which implies that

∀u,
∫
u dµ =

∫
u d(Tφ∗)#ν. (123)

As a result, µ = (Tφ∗)#ν so Tφ∗ is a legal transport map between µ and ν. This insight provides a way to extend

Brenier’s theorem from the quadratic cost to the general c(x, y) = h(x− y) for any strictly convex h.

Although the first variation does not depend on the geometry of the space, gradient does depend on the geometry

in the sense that

δJ(φ)(u) =: ⟨∇H J(φ), u⟩H (124)

for some selected Hilbert space H . After the selection of H , we would derive a formula of the gradient and implement

the gradient ascent to iteratively optimize the Kantorovich potentials.

One natural choice of H would be the L2 function space, in which case

∇L2J(φ) = d[µ− (Tφ)#ν], (125)

as the likelihood of the measure µ− (Tφ)#ν. The gradient has a natural interpretation as closing the gap between µ

and the transported ν through the current φ. However, this gradient method has unstable performance numerically,

as can be expected, since likelihoods of measures lack regularity and can go wild.

To explain this phenomenon mathematically, we continue to calculate the second variation at u:

δ2J(φ)(u, u) := lim
t→0

δJ(φ+ tu)(u)− δJ(φ)(u)

t
. (126)
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To get a closed-form solution, we assume a quadratic cost c(x, y) = 1
2 |x− y|2. Now Tφ(y)− y−∇φ(Tφ(y)) = 0 and:

δ2J(φ)(u, u) = lim
t→0

−
∫
u(Tφ+tu(y)) dν(y) +

∫
u(Tφ(y)) dν(y)

t
(127)

= −
∫
[∂tu(Tφ+tu(y))]

∣∣∣
t=0

dν(y) (128)

= −
∫
[∇u(Tφ(y))]T [I −∇2φ(Tφ(y))]∇u(Tφ(y)) dν(y) (129)

= −
∫
[∇u(x)]T [I −∇2φ(x)]∇u(x) d(Tφ)#ν(x). (130)

The calculations of [∂tu(Tφ+tu(y))]
∣∣∣
t=0

follows from the chain rule, and differentiating both sides of Tφ+tu(y)− y −
∇(φ + tu)(Tφ+tu(y)) = 0 w.r.t. t. The key observation is that δ2J(φ)(u, u) contains ∇u, which is not necessary

bounded for u ∈ L2, since ∇u may blow up. From the optimization theory, we quote the following lemma (which is

called by Matt the fundamental theorem of optimization):

Lemma 8. For F : H → R, if there exists L > 0 such that

∀a, b ∈ H , F (a) ≤ F (b) + ⟨∇H F (b), a− b⟩H +
L

2
∥a− b∥2H , (131)

then the gradient step bnew = b− 1
L∇H F (b) decreases F , i.e.,

F (b̃) ≤ F (b)− 1

2L
∥∇H F (b)∥2H . (132)

The lemma tells us a sufficient condition for the gradient step to work is when ∇2F ≤ LI, i.e., the Hessian has

a bounded spectrum. The lack of regularity in ∇u causes the possible blowup of the second variation,

which in turn causes the unstable numerical performance of the L2 gradient method! Then, shall we

choose a very strong Hilbert space H for u to ensure nice enough regularity? The answer is again no from the lemma,

since the progress of the gradient step 1
2L∥∇H F (b)∥2H would be small for strong Hilbert spaces. The wisdom is

to choose the weakest Hilbert space where gradient methods are stable. As long as gradient methods are

stable, we wish to maximize the progress at each gradient step to have an algorithm that converges faster.

Remark. If we discretize everything at the very beginning, we would not have noticed the problem caused by ∇u. The
wisdom here is that we shall look at objects in infinite-dimensional spaces first to capture the structures,

and always put off discretizeation to the last possible moment.

Naturally, we consider the weakest Hilbert space where we have any hope of having a stable gradient method.

The Hilbert space shall be a subspace of L2, and shall also ensure the regularity of ∇u, which is the Sobolev space:

H1 :=
{
u ∈ L2 : ∇u ∈ L2

}
. (133)
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This Hilbert space has the canonical norm defined as

∥u∥H1 :=
√

∥u∥2L2 + ∥∇u∥2L2 . (134)

Here, H is the Hilbert space where the Kantorovich potentials live, but we don’t care about constants added or

subtracted from the potentials, e.g. φ and φ+C has the same objective value J(φ) and are essentially same potentials.

As a result, we modulo H1 by additive constants to get the homogeneous Sobolev space Ḣ1 with the inner product

and the norm:

⟨u, v⟩Ḣ1 := ⟨∇u,∇v⟩L2 , ∥u∥Ḣ1 := ∥∇u∥L2 . (135)

To clarify, each element u in Ḣ1 is an equivalent class [u] :=
{
v ∈ H1 : ∇u = ∇v

}
, whose elements differ from u by

an additive constant. Finally, we are able to specify the Hilbert space

H = Ḣ1. (136)

The next step is to compute the gradient ∇Ḣ1J(φ). Using integration by parts,

δJ(φ)(u) = ⟨∇Ḣ1J(φ), u⟩Ḣ1 (137)

= ⟨∇∇Ḣ1J(φ),∇u⟩L2 (138)

= −⟨∆[∇Ḣ1J(φ)], u⟩L2 (139)

=

∫
u d[µ− (Tφ)#ν]. (140)

This implies

∇Ḣ1J(φ) = −∆−1(d[µ− (Tφ)#ν]) = −∆−1(∇L2J(φ)). (141)

The gradient is the negative inverse Laplacian applied to the density gap d[µ−(Tφ)#ν]. Compared to the L2 gradient,

an extra inverse Laplacian appears for the purpose of smoothing, which provides stability of the gradient steps.

Remark. The inverse Laplacian has the interpretation of smoothing by spreading information in the neighborhood.

To understand this, consider the Poisson equation ∆u = f , it’s generally the case that u = ∆−1f has a much nicer

regularity compared to the potential f .

At this point, we derived the gradient algorithm for OT that

φn+1 = φn − αn∆−1(d[µ− (Tφn)#ν]), (142)

where Tφ(y) = argminx {c(x, y)− φ(x)}. When it comes to numerical implementation, µ and ν are typically orga-

nized as empirical measures with n and m point masses. In this case, one has to partition the space into grids to

calculate the density gap as the difference in the point mass. Notice that if a point x ∈ X does not receive a point
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mass, then the density gap is constantly zero so the value φ(x) never gets updated. This implies that we only need to

maintain and update the value of φ(x) for x ∈ X that receives a point mass (appears in the empirical observation).

This enables us to formulate φ without using other function parameterization and approximation tools.

Remark. To clarify, we consider the case where X = Y = R, where n observations x1, ..., xn from µ and m

observations y1, ..., ym from ν are provided. In this case, dµ = 1
n 1⃗n ∈ Rn is the pmf of the empirical measure

µ = 1
n

∑n
i=1 δxi

while dν = 1
m 1⃗m ∈ Rm. Clearly, (Tφ)#ν puts point mass 1

m at each Tφ(yj) ∈ {x1, ..., xn}. Hence we

partition R according to n endpoints x1, ..., xn, and formulate φ ∈ Rn as the value of φ evaluated at those n points.

The inverse of the Laplacian has an easy representation under the Fourier transform, i.e., if ∆u = f , then

û(ξ) = − 1
|ξ|2 f̂(ξ). We use FFT to apply a discrete Fourier transform, then apply the inverse Laplacian on the

frequency field, and the inverse Fourier transform, to calculate the term ∆−1(d[µ− (Tφn)#ν]). Be careful here that

the normal FFT assumes a periodic boundary condition, which does not match with the structure of OT. Ideally, we

wish that there’s no flux of mass outside of the computational domain, so a zero Neumann boundary condition

shall be adopted, i.e.,

∇Tφ · n⃗ = 0. (143)

This can be implemented through the cosine transform.

Finally, we emphasize that all the works done above also apply symmetrically for the other Kantorovich potential

ψ. Instead of learning only one of the potentials, we prefer learning both potentials at the same time. Numerical

tests imply that learning both potentials helps the algorithm converge much faster compared to learning only one of

them. Intuitively, both potentials contain features of the optimal transport map, which might be complementary in

some cases. This can also be explained mathematically in the remark below.

Remark. For given φc = ψ,ψc = φ, clearly Tφ and Tψ are inverse of each other. As a result,

DTφ ◦ Tψ = (DTψ)
−1, DTψ ◦ Tφ = (DTφ)

−1. (144)

A small eigenvalue of DTψ is likely to be a large eigenvalue of DTφ, which can be easily captured by φ but hard for

ψ. This implies that singular features of the derivatives of the potentials might exist, which explains why there’s a

much faster convergence when learning both potentials.

Our strategy goes like this: after updating φn, the corresponding ψ is set as the c-transform (φn)c. After

updating ψn, the corresponding φ shall be set as the c-transform (ψn)c. The algorithm updates both potentials in

an alternating way, which is why this algorithm is called back-and-forth. The details are listed in Alg. 1.

When switching between two potentials, we use the c-transform for a reason. Notice that

I(φc) =

∫
φcc dµ+

∫
φc dν ≥

∫
φdµ+

∫
φc dν = J(φ). (145)

Whenever the c-transform is taken and plugged into the objective function of the other potential, it always increases

the objective value. As a result, if the gradient steps in the back-and-forth algorithm are guaranteed to increase the
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Algorithm 1 Back-and-Forth

1: repeat
2: φn+

1
2 = φn − αn∆−1(d[µ− (Tφn)#ν])

3: ψn+
1
2 = (φn+

1
2 )c

4: ψn+1 = ψn+
1
2 − βn∆−1(d[ν − (T

ψn+1
2
)#µ])

5: φn+1 = (ψn+1)c

6: until Enough iterations are done

objective value (with an appropriate stepsize), then the algorithm enjoys monotonic improvements, i.e.,

J(φn) ≤ J(φn+
1
2 ) ≤ I(ψn+

1
2 ) ≤ I(ψn+1) ≤ J(φn+1). (146)

Although there has been no convergence proof for this algorithm, it demonstrates fast convergence in experiments

and the monotonic improvements is guaranteed, despite the high difficulty of implementation.
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Sinkhorn

The motivation of Sinkhorn is to change the notion of c-transform. A natural idea would be to add regularization

terms and check what new notions of c-transform we are getting. Without changing the optimal coupling in the

Kantorovich problem, we consider

inf
π∈Π(µ,ν)

∫
c(x, y)π(x, y) dx dy + ε

∫ [
π(x, y) log

π(x, y)

π∗(x, y)
− π(x, y)

]
dx dy. (147)

Here we denote π(x, y) as the joint density and µ(x), ν(y) the marginal densities without distinguishing them from

the measures. Notice that the −π(x, y) term integrates to 1 and is added here for the simplicity of subsequent

calculations. The remaining term in the regularization is actually the KL-divergence

DKL(π||π∗), (148)

which is zero iff π = π∗. In this sense, adding the entropy regularization term does not change the optimizer π∗.

However, π∗ is what we want to calculate and is unknown to us, so we have to replace it with some coupling in

Π(µ, ν). The most natural coupling that comes to our mind is µ ⊗ ν. So the entropy-regularized OT is formed

as:

inf
π∈Π(µ,ν)

∫
c(x, y)π(x, y) dx dy + ε

∫ [
π(x, y) log

π(x, y)

µ(x)ν(y)
− π(x, y)

]
dx dy. (149)

Likewise, we consider the dual problem. Assume Kantorovich potentials φ,ψ to be the Lagrange multipliers,

the Langrangian is

Q(π, φ, ψ) = inf
π∈Π(µ,ν)

∫
c(x, y)π(x, y) dx dy + ε

∫ [
π(x, y) log

π(x, y)

µ(x)ν(y)
− π(x, y)

]
dx dy (150)

+ ⟨φ, µ− (P1)#π⟩+ ⟨ψ, ν − (P2)#π⟩ . (151)

Taking derivative w.r.t. π shows that the π that attains the infimum is given by the one that satisfies

c(x, y)− φ(x)− ψ(y) + ε log
π(x, y)

µ(x)ν(y)
= 0. (152)

We calculate the Lagrange dual function

inf
π
Q(π, φ, ψ) =

∫
φ(x)µ(x) dx+

∫
ψ(y)ν(y) dy − ε

∫
µ(x)ν(y)e−

1
ε (c(x,y)−φ(x)−ψ(y)) dx dy. (153)

The Sinkhorn dual is given by

sup
φ,ψ

D(φ,ψ) :=

∫
φ(x)µ(x) dx+

∫
ψ(y)ν(y) dy − ε

∫
µ(x)ν(y)e−

1
ε (c(x,y)−φ(x)−ψ(y)) dx dy. (154)
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Notice that this problem no longer has hard constraints, which have been replaced with a relaxed softmax penalty

term. With a similar argument to the Kantorovich duality, strong duality still holds for EOT.

Naturally, we fix φ and find out the optimal ψ. Differentiate the dual objective w.r.t. ψ:

δ ⟨ψ, ν⟩
δψ

(y) = ν(y),
δ
∫
e

1
ε [ψ(y)−c(x,y)]ν(y) dy

δψ
(y) = e−

1
ε c(x,y)ν(y)e

1
εψ(y)

1

ε
. (155)

The optimal ψ for given φ satisfies:

ν(y)− ν(y)

∫
µ(x)e

1
ε [φ(x)+ψ(y)−c(x,y)] dx = 0. (156)

Similar to the back-and-forth method, we only need to consider updating the values ψ(y) for y ∈ supp(ν). Solving

for ψ gives

ψ(y) = φcε(y) := −ε log
∫
µ(x)e

1
ε [φ(x)−c(x,y)] dx. (157)

This is defined as the cε-transform of the potential φ, which contains information of µ and is a relaxation of the

c-transform φc. Similarly, we define the cε-transform for ψ as

ψcε(x) := −ε log
∫
ν(y)e

1
ε [ψ(y)−c(x,y)] dy. (158)

When µ, ν are empirical measures, the Kantorovich potentials φ(x), ψ(y) are only updated at the place where x, y

are observed in the empirical samples.

Remark. When ε → 0, the order of φcε(y) is asymptotically dominated by supx {φ(x)− c(x, y)} = −φc(y). As a

result, asymptotic approximation tells

φcε(y) ≈ −ε log
∫
µ(x)e−

1
εφ

c(y) dx = −ε log e− 1
εφ

c(y) = φc(y) (ε→ 0). (159)

This shows that as ε→ 0, the cε-transform degenerates to the c-transform on the support of µ and ν.

Now that cε-transform contains information from µ, ν, we are confident that the previous methodology of

replacing φ with φcc shall work. As an analogue, we denote

Jε(φ) :=

∫
φ(x)µ(x) dx+

∫
φcε(y)ν(y) dy − ε, Iε(ψ) :=

∫
ψcε(x)µ(x) dx+

∫
ψ(y)ν(y) dy − ε, (160)

as relaxed versions of J(φ) and I(ψ). Starting with φ,ψ, we have

D(φ,ψ) ≤ D(φ,φcε) = Jε(φ) ≤ D(φcεcε , φcε) = Iε(φ
cε) ≤ D(φcεcε , φcεcεcε). (161)

Sinkhorn has monotonic improvements, thanks to φcεcε ≥ φ, and the fact that φcεcεcε ̸= φcε (so that the

improvement continues). One can prove that whenever the improvement stops, both potentials must reach optimal
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simultaneously.

The details of Sinkhorn algorithm is provided in Alg. 2.

Algorithm 2 Sinkhorn

Require: ε > 0
1: repeat
2: φn+1 = (ψn)cε = argmaxφD(φ,ψn)
3: ψn+1 = (φn+1)cε = argmaxψD(φn+1, ψ)
4: until Enough iterations are done

When it comes to numerical implementation, we do not approximate φ,ψ but approximate

η(x) := µ(x)e
1
εφ(x), ξ(y) := ν(y)e

1
εψ(y) (162)

instead. This greatly simplifies the calculation of the cε-transform: if ψn+1 = (φn+1)cε , then

ηn+1(x) =
µ(x)∫

ξn(y)e−
1
ε c(x,y) dy

, ξn+1(y) =
ν(y)∫

ηn+1(x)e−
1
ε c(x,y) dx

. (163)

The denominators are actually convolutions, which are just matrix products in the discrete case.

If µ, ν are empirical measures supported on n,m points respectively, then µ, η ∈ Rn, ν, ξ ∈ Rm. In this case, we

denote K ∈ Rn×m such that Kij := e−
1
ε c(xi,yj). The Sinkhorn updates reduce to

ηn+1 =
µ

Kξn
, ξn+1 =

ν

KT ηn+1
, (164)

where the division is in the sense of component-wise division. After learning the optimal Kantorovich potentials, we

have to go back to the primal EOT problem. Previous calculations imply that the optimal coupling is

π∗(x, y) = e
1
ε [φ

∗(x)+ψ∗(y)−c(x,y)]µ(x)ν(y). (165)

In the discrete case, this reduces to

π∗ = diag(η∗)Kdiag(ξ∗). (166)

Remark. Sinkhorn can be generalized to solve MMOT (still the product measure as reference). The dual problem

has k potentials given k marginals and one still updates one while fixing all the others.
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Applications of OT

Wasserstein Regression

The Wasserstein regression refers to the regression in the space of measures and it provides a way to deal with

distributional data (each data point is a measure instead of a vector in the Euclidean space). To understand the

power of Wasserstein distance, we first review the traditional transformation method of dealing with distributional

data, which first extracts information from distributions, apply approximation tools on the extracted information,

and finally go back to distributions.

There are many popular transformation methods, one of which is called the log-quantile transformation. For a

given distribution, let f denote its density and Qf denote its quantile. The transformation starts with

Ψ(f)(t) := − log(f ◦Qf (t)), t ∈ [0, 1]. (167)

Each distribution denoted by f is mapped to a function Ψ(f) : [0, 1] → R. Next, we can apply traditional functional

data approximation tools for Ψ(f1), ...,Ψ(fn) to get the approximation g : [0, 1] → R. Finally, we can go back to

distributions by applying

Ψ−1(g)(x) := θge
−g◦H−1

g (x), (168)

where

θg :=

∫ 1

0

eg(s) ds <∞, Hg(t) := θ−1
g

∫ t

0

eg(s) ds. (169)

We skip the verifications here but it’s easy to check that∫
Ψ−1(g)(x) dx = θg

∫ 1

0

e−g(y) dHg(y) = 1 (170)

is a legal density.

Remark. Consider as an example the classification of distributional data points, i.e. given densities f1, ..., fn, we

hope to classify them into two classes. The space of density functions is not even a vector space, but the log-quantile

transformed space is a Hilbert space, on which a decision boundary can be figured out. Applying Ψ−1 allows us to map

the decision boundary in the space of log-quantile transformations to the decision boundary in the space of measures.

Interesting questions include the stability of the decision boundary, e.g., when points in the log-quantile trans-

formed space are close to the decision boundary, if the points in the space of measures are also close to the decision

boundary.

Other examples of transformation methods include the score function and the Langevin dynamics for the purpose

of learning a measure and sampling from the measure numerically, etc.
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With tools from OT, however, we are able to conduct regression or classification in the native space under the

Wasserstein geometry. In Euclidean space, the linear regression problem is a problem to learn E(Y |X = x) given

observations (X1, Y1), ..., (Xn, Yn) from the model y = β0+β1x+ε, where ε is the noise that follows some distribution.

As an analogue, we can formalize the Wasserstein regression problem as observing noisy observations (tuples of

measures) (µ1, ν1), ..., (µn, νn) and hoping to recover the relationship between µ and ν. In the ideal general setting

without noises, the model is (µ, ν) ∼ P for P ∈ P(P(Rd)×P(Rd)) (a probability distribution on the space of tuples

of measures). However, the structure defined by a distribution P is too general to model, and we hope that some

special connections between µ and ν can be assumed. Inspired by the OT problem, we would assume the noiseless

model to be

ν = (T0)#µ (171)

for some increasing function T0 : Rd → Rd. This assumption presents a clever trade-off between generality and

interpretability. The pushforward is a lifting of a mapping on the underlying space to the space of measure so it can

be interpreted as ”ν is a function of µ”. When it comes to adding noises to the model, we still use the pushforward,

but the pushforward of a random function instead of a deterministic one. The noisy model is given by

ν = (Tε)#(T0)#µ, (172)

where ε is a r.v. such that

∀x,ETε(x) = x. (173)

For example, Tε(x) = x+ ε, ε ∼ N(0, σ2) is a legal source of the noise. By Brenier’s theorem, we restrict to T0, Tε as

gradients of convex functions (increasing).

After putting up the model, we try to define the conditional expectation E(ν|µ) for (µ, ν) ∼ P. The main

difficulty here is to understand what it means to average a distribution on the space of measures. Recall that the

conventional conditional expectation is an orthogonal projection, we can simply replace the L2 distance with the

2-Wasserstein distance to provide the definition:

∀(µ, ν) ∼ P,E(ν|µ) := argmin
b=T#µ

∫
W 2

2 (ν, b) dP(ν|µ). (174)

The definition guarantees ”measurability” by requiring E(ν|µ) to be a ”function” of µ. If we combine this with the

noisy model above, then without any surprise,

∀ν = (Tε)#(T0)#µ, E(ν|µ) = (T0)#µ. (175)

At this point, we can formulate theWasserstein regression problem as: given observations (µ1, ν1), ..., (µn, νn)

such that νi = (Tεi)#(T0)#µi for i.i.d. r.v. εi, we want to learn T0 from the data.
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One natural way to solve this problem is to adopt the least square criterion that

Mn(T ) :=
1

n

n∑
i=1

W 2
2 (T#µi, νi). (176)

This quantity works as the mean square loss of T in traditional linear regression, and we aim to find a T̂ that

minimizes this loss as the least square estimator.

Remark. When d = 1, the Wasserstein distance has a simple formula so the problem reduces to minimizing

Mn(T ) :=
1

n

n∑
i=1

∥T −Qνi ◦ Fµi
∥2L2(µi)

, (177)

which is quadratic in T . This is a convex optimization problem that can be easily solved.
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Gradient Flow and JKO Scheme

For given F : Rd → R, we call X(t) a gradient flow of F if it’s always travelling in the direction of steepest

descent, i.e.,

X ′(t) = −∇F (X(t)). (178)

Such gradient flow is describing the motion of one particle. With a lot of particles, we need to add a space variable

x such that X(t, x) denotes the time t location of the particle that starts at x. All particles move in the direction of

−∇F and the particles have density µ(t, x) at time t. Clearly,

∂tX(t, x) = −∇F (X(t, x)), µ(t, ·) = [X(t, ·)]#µ(0, ·). (179)

We want to figure out the time evolution of µ.

For any ψ, consider∫
∂tµ(t, x)ψ(x) dx = ∂t

∫
µ(t, x)ψ(x) dx = ∂t

∫
µ(0, x)ψ(X(t, x)) dx (180)

=

∫
µ(0, x)∇ψ(X(t, x)) · ∂tX(t, x) dx (181)

= −
∫
µ(0, x)∇ψ(X(t, x)) · ∇F (X(t, x)) dx (182)

= −
∫
µ(t, x)∇ψ(x) · ∇F (x) dx. (183)

Apply integration by parts to get

−
∫
µ(t, x)∇ψ(x) · ∇F (x) dx =

∫
ψ(x)divx[µ(t, x)∇F (x)] dx. (184)

It follows that

∂tµ− divx(µ∇F ) = 0. (185)

This is called the continuity equation and it’s the same as the Fokker-Planck equation for a deterministic diffusion

with drift −∇F . It’s obvious that if ∂tX(t, x) = v(X(t, x)), the particles move according to velocity field v, then the

continuity equation becomes

∂tµ+ divx(µv) = 0. (186)

Now let’s consider approximating the gradient flow numerically. We start with considering a single particle and

then generalize it to the case of infinitely many particles. Most naturally, we use gradient descent and choose a small
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time step τ for the time discretization. The gradient flow can be approximated by

X((n+ 1)τ, x)−X(nτ, x)

τ
= −∇F (X(nτ, x)). (187)

This is the forward Euler scheme of approximating gradient flow but it suffers from the issue of selecting the stepsize

τ . A small τ would result in small progress while a large τ might even take the particle to the place where the value

of F is larger than the original. A remedy is to use the implicit backward Euler scheme instead, given by

X((n+ 1)τ, x)−X(nτ, x)

τ
= −∇F (X((n+ 1)τ, x)). (188)

The implicit scheme is known to be more stable, but as a cost to pay we have to solve an equation in X((n+1)τ, x)

to determine the update. We rewrite the equation as

(id+ τ∇F )[X((n+ 1)τ, x)] = X(nτ, x). (189)

Notice that id+τ∇F can be written as the gradient of Gτ (x) :=
1
2 |x|

2+τF . Use the property that (∇Gτ )−1 = ∇G∗
τ

to get (star means Frenchel conjugate)

X((n+ 1)τ, x) = ∇G∗
τ [X(nτ, x)]. (190)

Notice that ∇G∗
τ is the gradient of a convex function, which reminds us of Brenier’s theorem, which shows an

underlying connection with OT. Typically, ∇G∗
τ is hard to calculate numerically. Instead, we solve the following

optimization problem:

min
y

{
F (y) +

1

2τ
|y −X(nτ, x)|2

}
. (191)

Taking the derivative w.r.t. y, we see that the optimal y satisfies

∇F (y) + 1

τ
(y −X(nτ, x)) = 0. (192)

Such optimal y exactly matches X((n+1)τ, x) in the backward Euler scheme, which is called the one-particle JKO

scheme.

Remark. The term 1
2τ |y − X(nτ, x)|2 is the proximal operator that penalizes the next location X((n + 1)τ, x) for

being far away from the former location X(nτ, x). In the context of gradient flows, the proximal operator has a

natural interpretation from the backward Euler scheme.

For infinitely many particles, we generalize the one-particle scheme on knowing that each particle shall follow

the one-particle JKO scheme. Instead of focusing on the locations X((n + 1)τ, x) for infinitely many x, we shall

instead focus on solving the density µ((n + 1)τ, x) given µ(nτ, x) to describe the time evolution of the population.
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The one-particle JKO scheme applies for X(nτ, x):

∀x ∈ Rd, X((n+ 1)τ, x) = argmin
T :Rd→Rd

{
F (T (x)) +

1

2τ
|T (x)−X(nτ, x)|2

}
. (193)

Such T (x) is actually just a mapping that maps each location x to the corresponding minimizer in the one-particle

JKO scheme. Recall the interpretation of X(nτ, x) as the time nτ location of the particle that starts from initial

location x. We understand x as the ”sample point” in probability theory so that X(nτ, ·) is a random variable that

describes all particles’ locations at time nτ , which follows µ(nτ, ·). In addition, with the initial location x as the

”sample point”, the probability measure on the sample space Ω = Rd is given by µ(0, ·). We yield the JKO scheme

for all particles:

X((n+ 1)τ, ·) = argmin
Y=T (X0)

EX0∼µ(0,·)

(
F (Y ) +

1

2τ
|Y −X(nτ, ·)|2

)
. (194)

Here T is actually a transport map from µ(0, ·) to µ((n+1)τ, ·). Given the results from the previous iteration µ(nτ, ·),
we wish to assume Y = T (X(nτ, ·)) so that µ((n+ 1)τ, ·) only depends on µ(nτ, ·). In this sense, we can rewrite the

problem as

min
Y=T (X(nτ,·))

∫ (
F (Y ) +

1

2τ
|Y −X(nτ, ·)|2

)
µ(0, x) dx = min

T

∫ (
F (T (x)) +

1

2τ
|T (x)− x|2

)
µ(nτ, x) dx, (195)

by absorbing the pushforward by X(nτ, ·). Now T : Rd → Rd denotes a transport map from µ(nτ, ·) (known) to

µ((n+1)τ, ·) (unknown). This problem is similar to a Monge problem with cost c(x, T (x)) = F (T (x))+ 1
2τ |T (x)−x|

2,

with the difference that now we also have the freedom to choose the target measure (different from OT which is

supervised learning). Denote µ := T#µ(nτ, ·) to rewrite it as an optimization problem in terms of the measure:

min
µ

min
T :T#µ(nτ,·)=µ

∫ (
F (T (x)) +

1

2τ
|T (x)− x|2

)
µ(nτ, x) dx (196)

= min
µ

{∫
F (x)µ(x) dx+

1

2τ
min

T :T#µ(nτ,·)=µ

∫
|T (x)− x|2µ(nτ, x) dx

}
(197)

= min
µ

{∫
F (x)µ(x) dx+

1

2τ
W 2

2 (µ, µ(nτ, ·))
}
. (198)

The optimizer provides µ((n + 1)τ, ·) and this is referred to as the JKO scheme in general. The expression is

surprisingly simple, with the Euclidean distance in the proximal operator replaced by the Wasserstein distance.

Remark. All the particles are moving in the direction of the negative gradient of F , so
∫
F (x)µ(x) dx is the natural

objective to minimize. However, only minimizing
∫
F (x)µ(x) dx aligns with the forward Euler scheme, which leads

to the stepsize issue.

In the context of RL, if we understand
∫
F (x)µ(x) dx as the expected cost following a certain policy and replace

the Wasserstein distance with the KL-divergence, we get the TRPO algorithm with the same philosophy that we shall

not allow too much change in the measure so that we do not make unrecoverable catastrophic mistake when exploring.
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Benamou-Brenier Formula

Recall the discussion on the continuity equation, if the diffusion of particles is not time-homogeneous, i.e.,

∂tX(t, x) = v(t,X(t, x)) with the drift coefficient v to be depending on time t, then the continuity equation becomes

∂tµ(t, x) + divx(µ(t, x)v(t, x)) = 0. For simplicity, we denote vt(·) := v(t, ·), µt(·) := µ(t, ·) and the sample space

Ω ⊂ Rd as the collection of all possible values of x (for the generality of the normal vector on the boundary). If the

pair (µt, vt) solves the continuity equation with the no-flux boundary condition

µtvt · n|∂Ω = 0, (199)

then the action of the pair (µt, vt) is defined as

A[µt, vt] :=

∫ 1

0

∫
|vt(x)|2µt(x) dx dt. (200)

Remark. The no-flux boundary condition guarantees the conservation of mass. By the divergence theorem,

∂t

∫
Ω

µt(x) dx = −
∫
Ω

divx(µt(x)vt(x)) dx =

∫
∂Ω

µtvt · ndS = 0. (201)

Hence µt is always a legal density function and the boundary condition is natural.

It’s crucial to understand the action of the density-velocity pair. Clearly the term
∫
|vt(x)|2µt(x) dx is accu-

mulating the product of the local mass and the local velocity square, which is proportional to the kinetic energy.

Integrated w.r.t. time, we get the cumulative kinetic energy on the time horizon [0, 1] induced by the time evolution

of mass (described by µt) and the time evolution of the velocity field (described by vt).

Theorem 8 (Benamou-Brenier). For any µ, ν,

W 2
2 (µ, ν) = inf {A[µt, vt] : µ0 = µ, µ1 = ν, ∂tµt + divx(µtvt) = 0, µtvt · n|∂Ω = 0} . (202)

Proof. Consider the location Xt(x) induced by the diffusion ∂tXt(x) = vt(Xt(x)). Clearly µt = (Xt)#µ0 and X1 is

a legal transport map from µ to ν. Using this fact,

A[µt, vt] =

∫ 1

0

∫
|vt(Xt(x))|2µ0(x) dx dt =

∫ 1

0

∫
|∂tXt(x)|2µ0(x) dx dt (203)

=

∫
µ0(x)

∫ 1

0

|∂tXt(x)|2 dt dx ≥
∫
µ0(x)

∣∣∣∣∫ 1

0

∂tXt(x) dt

∣∣∣∣2 dx (204)

=

∫
µ0(x) |X1(x)− x|2 dx ≥W 2

2 (µ, ν). (205)

The first inequality follows from Cauchy-Schwarz and the second from the definition of the Wasserstein distance.

It suffices to construct X that attains the infimum. By Brenier’s theorem, when cost is c(x, y) = |x − y|2, the
optimal transport map T exists and is unique, and T = ∇ϕ for some convex ϕ. Naturally, we take the geodesic

39



OT notes written by Haosheng Zhou CONTENTS

Xt(x) = tT (x) + (1− t)x such that X1 coincides with T . In this case, µt = (Xt)#µ0 is induced by Xt, and vt is the

one that solves ∂tXt(x) = vt(Xt(x)). The existence of such vt is guaranteed by the temporal smoothness of µt (µt

is continuous and differentiable in t). The continuity equation and the no flux boundary condition naturally holds

when such vt exists. It remains to check that all inequalities in the calculation of the action are actually equalities.

The last equality follows from the optimality of T and∣∣∣∣∫ 1

0

∂tXt(x) dt

∣∣∣∣2 =

∣∣∣∣∫ 1

0

(T (x)− x) dt

∣∣∣∣2 = |T (x)− x|2 =

∫ 1

0

|∂tXt(x)|2 dt. (206)

This concludes the proof.

The Benamou-Brenier formula provides another characterization of theW2 distance (the optimal transport cost)

as the minimum amount of kinetic energy required to interpolate µ with ν under some velocity field. Actually,

the formula also holds for generalWp distance (with a similar proof), but the definition of the action will then depend

on p so one loses the nice interpretation of the optimal transport cost as the kinetic energy.
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Example: Heat Equation as Gradient Flow

In the language of the diffusion, gradient flow is actually the special case in which the velocity field is the negative

gradient of some potential, i.e., v = −∇F .
Let’s consider a special F given by

F (u) =
1

2

∫
|∇u|2 dx, (207)

where u = u(t, x) ∈ C1,2. We use the notation u(t, x) instead of X(t, x) to focus on the PDE context rather than

the particle physics context. Clearly, the gradient of F is the gradient w.r.t. u, which is a function, so we calculate

the first variation.

δF (u)(ψ) = lim
ε→0

F (u+ εψ)− F (u)

ε
(208)

=

∫
∇u(x) · ∇ψ(x) dx. (209)

When writing the gradient according to the first variation, we have to specify a geometry. Without extra information,

it’s natural to use the geometry induced by the inner product on the Hilbert space H = L2(Rd), which defines the

gradient ∇L2F (u). By integration by parts,

δF (u)(ψ) = −
∫

∆u(x)ψ(x) dx = ⟨∇L2F (u), ψ⟩L2 , (210)

which implies

∇L2F (u) = −∆u. (211)

The gradient flow induced by such a potential F is exactly the heat equation

∂tu = ∆u. (212)

Remark. If one tries to calculate the second variation, it turns out that

δ2F (u)(ψ)(ψ) =

∫
|∇ψ(x)|2 dx ≥ 0. (213)

The potential F is convex in u.
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Wasserstein Gradient Flow

One crucial insight of the Benamou-Brenier formula is the representation of the Wasserstein distance

W 2
2 (µ, ν) = inf

µt

{∫ 1

0

∥∂tµt∥2µt
dt : µ0 = µ, µ1 = ν

}
, (214)

where

∥∂tµt∥2µt
:= inf

vt

{∫
Ω

|vt|2µt dx : ∂tµt + divx(µtvt) = 0, µtvt · n|∂Ω = 0

}
, (215)

where the infimum w.r.t. µt and vt are written in a specific order. Actually, there is a reason we are doing this: the

2-Wasserstein distance now looks like a metric on a Riemannian manifold (connecting µ and ν using a curve µt, the

metric is the infimum of the integral along some norm ∥·∥µt of the tangent vector ∂tµt), which is defined through

the solution to a variational problem, minimizing the energy of the curve. At this point, the formula shows us the

interpretation of the Wasserstein space as a Riemannian manifold.

We are satisfied with the representation of W 2
2 but not the one for ∥·∥µt , which comes from an optimization

problem in vt. For given µt, if vt is the minimizer under constraints ∂tµt + divx(µtvt) = 0, µtvt · n|∂Ω = 0, the

perturbed version ṽt = vt + ε wµt
is also feasible given that divx(w) = 0, w · n|∂Ω = 0. As a result,∫

Ω

|vt|2µt dx ≤
∫
Ω

|ṽt|2µt dx. (216)

Set ε→ 0 to see that ∫
Ω

vt(x) · w(x) dx ≥ 0. (217)

Setting w as −w (ṽt still feasible) yields ∫
Ω

vt(x) · w(x) dx = 0. (218)

The perturbation tells us that the optimal vt lies in the space

V = {w : divx(w) = 0, w · n|∂Ω = 0}⊥ . (219)

Since w is divergence-free, its Helmholtz decomposition only contains the gradient term.

V = {∇ψ|ψ : Ω → R} . (220)
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Clearly, the representation of the minimizer vt = ∇ψt results in

∥∂tµt∥2µt
=

∫
Ω

|∇ψt|2µt dx, (221)

where ψt is the solution to the PDE with zero Neumann boundary conditions:∂tµt + divx(µt∇ψt) = 0

µt∇ψt · n|∂Ω = 0
. (222)

So far, we have stated a simpler representation of ∥∂tµt∥2µt
, which has something to do with the PDE above.

This directly motivates the following definition as the Wasserstein inner product: for f, g : Ω → R such that∫
Ω
f =

∫
Ω
g = 0, the Wasserstein inner product at measure µ is defined as

⟨f, g⟩µ :=

∫
Ω

∇ψf (x) · ∇ψg(x) µ(x) dx, (223)

where the potentials ψf , ψg are determined through solving the PDE:f + divx(µ∇ψf ) = 0

µ∇ψf · n|∂Ω = 0
. (224)

Remark. Intuitively speaking, we treat f, g as ∂tµt so the conditions
∫
Ω
f =

∫
Ω
g = 0 are necessary since

∫
f(x) dx =

∂t
∫
µt(x) dx = ∂t1 = 0.

With the geometry on W2 to be induced by an inner product, we can finally define gradients on the Wasserstein

space. For a given function J : P(Ω) → R, denote its first variation at µ as δJ(µ)(η), then

⟨∇W2
J(µ), η⟩µ = δJ(µ)(η) (225)

defines the Wasserstein gradient ∇W2J(µ).

The following lemma calculates the Wasserstein gradient for a family of important examples of J .

Lemma 9. If J(µ) =
∫
U(µ(x)) dx for some U : R → R where µ(x) is the density function of µ, then

∇W2
J(µ) = −divx(µU

′′(µ)∇µ). (226)

Proof. Since Ω = R has no boundary, all boundary terms vanish. Calculate the first variation

δJ(µ)(η) =

∫
U ′(µ(x))η(x) dx. (227)
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Then let’s match with the Wasserstein inner product. By intergation by parts,∫
U ′(µ(x))η(x) dx =

∫
∇ψJ(x)∇ψη(x) µ(x) dx = −

∫
ψJ divx(∇ψηµ) dx (228)

where

∇W2
J(µ) + divx(µ∇ψJ) = 0, (229)

η + divx(µ∇ψη) = 0. (230)

Plug in to get ∫
U ′(µ(x))η(x) dx =

∫
ψJη dx, ψJ = U ′ ◦ µ. (231)

Finally, we use again the PDE to get

∇W2J(µ) = −divx(µ∇ψJ) = −divx(µU
′′(µ)∇µ). (232)

Similar to the gradient flow on Euclidean spaces, we define the Wasserstein gradient flow induced by J as

the PDE

∂tµt = −∇W2
J(µt). (233)

At this point it should be clear that the JKO scheme introduced in the previous context is actually a numerical

algorithm for solving Wasserstein gradient flows.

It’s crucial to realize that a lot of PDEs are actually Wasserstein gradient flows. For example, if we set U(x) =

x log x, then J(µ) is the negative entropy of µ. From simple calculations,

∇W2J(µ) = −divx(∇µ) = −∆µ. (234)

The Wasserstein gradient flow induced by U(x) = x log x (J as the negative entropy) is the heat equation

with zero Neumann boundary condition. In this sense, the JKO scheme

µ(n+1)τ = argmin
µ

{
J(µ) +

1

2τ
W 2

2 (µ, µnτ )

}
(235)

provides a numerical algorithm solving the heat equation.

Remark. PDEs like ∂tu = ∆(um) are called porous medium equation/fast diffusion equation based on the value of

m. This family of PDEs are Wasserstein gradient flows with U(x) = xm

m−1 so they can also be solved through the

JKO scheme. The key lies in recognizing that a certain PDE is a Wasserstein gradient flow.
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Remark. The linear functional derivative w.r.t. a measure δJ(µ)
δµ (x) is defined as the one such that

δJ(µ)(η) =:

〈
δJ(µ)

δµ
, η

〉
L2

. (236)

In the example above, it’s clear that

δJ(µ)

δµ
= U ′ ◦ µ. (237)

If J is the negative entropy, then

δJ(µ)

δµ
(x) = log µ(x) + 1. (238)

The L-derivative is given by

∂µJ(µ)(x) = ∇x
δJ(µ)

δµ
(x) = ∇ logµ(x), (239)

which is the score function. The Wasserstein gradient flow provides another way to formalize the derivative w.r.t. a

measure, and is consistent with the L-derivative.
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Adversarial Training: an example in Linear Regression

Neural networks, even if restricted to the supervised learning tasks, are still vulnerable to adversarial attacks.

For example, if one has a trained image classification model and adds small noise to a picture in a certain category,

human eyes cannot distinguish the difference while it might greatly perturb the classification and provides ridiculous

predictions. Surprisingly, those adversarial attacks turn out to be transferrable in the sense that the same methodol-

ogy would work for models trained for different purposes. That means, adversarial training is necessary to improve

the robustness of the models.

Denote x,X as features, y, Y as labels, θ as the model parameter and l as the loss function. The original training

task can be described as

min
θ

E(X,Y )∼µl((X,Y ), θ). (240)

Here µ is typically a measure on a low-dimensional manifold in a high-dimensional space and the loss measures the

accuracy of the model prediction compared to the true label. When taking into account the robustness, one does the

distributionally robust optimization (DRO)

min
θ

sup
µ̃:D(µ,µ̃)≤ε

EZ̃∼µ̃l(Z̃, θ), (241)

where z = (x, y) denotes the concatenation of the feature and the label. The adversarial first perturbs the distribution

µ a little bit and then we train the model to guarantee the worst-case performance.

Let’s first check a toy example with linear regression. We specify the following setting

z = (x, y) ∈ Rd−1 × R, θ ∈ Rd−1, l(θ, z) = |y − θTx|2, D =W 2
2 . (242)

Firstly, start with the supremum in DRO

sup
µ̃:W 2

2 (µ,µ̃)≤ε
EZ̃∼µ̃l(Z̃, θ) = sup

π:(P1)#π=µ,
∫
|z−z̃|2 dπ(z,z̃)≤ε

∫
l(z̃, θ) dπ(z, z̃). (243)

This is a constrained optimization problem. We leave the constraint (P1)#π = µ unchanged while turning
∫
|z −

z̃|2 dπ(z, z̃) ≤ ε into the dual. Write down the Langrangian for β ≥ 0:

Q(π, β) =

∫
l(z̃, θ) dπ(z, z̃) + β

(
ε−

∫
|z − z̃|2 dπ(z, z̃)

)
. (244)

Calculate the dual objective

sup
π:(P1)#π=µ

Q(π, β) = sup
π:(P1)#π=µ

{∫
[l(z̃, θ)− β|z − z̃|2] dπ(z, z̃) + βε

}
. (245)

Here the coupling π starts from µ but can send the masses to anywhere. Maximizing w.r.t. such π is equivalent to
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maximizing pointwisely for each z, i.e., sending each z to the z̃ that maximizes the objective. For fixed z,

T (z) := argmax
z̃

{
l(z̃, θ)− β|z − z̃|2

}
(246)

defines the best place we shall send z to. On the other hand,

ψθβ(z) := max
z̃

{
l(z̃, θ)− β|z − z̃|2

}
(247)

defines the best cost at z if we stick to the transport map T . As a result, the dual problem is

inf
β≥0

{∫
ψθβ(z) dµ(z) + βε

}
(248)

and strong duality holds due to the convex-concave minimax theorem.

At this point, we rewrite DRO dual as

min
θ

inf
β≥0

{∫
ψθβ(z) dµ(z) + βε

}
, (249)

which is the best we can do for a general model. Here we use the specific setting of linear regression to get something

interpretable. We explicitly calculate T (z) and ψθβ(z):

T (z) = (x̃, ỹ),

ỹ − θT x̃ = β(ỹ − y)

(ỹ − θT x̃)θ + β(x̃− x) = 0
⇒ T (z) =

(
x− y − θTx

β − |θ|2 − 1
θ, y +

y − θTx

β − |θ|2 − 1

)
. (250)

Hence,

ψθβ(z) = (y − θTx)2
β

β − |θ|2 − 1
. (251)

Finally, we solve

inf
β≥0

{
β

β − |θ|2 − 1

∫
(y − θTx)2 dµ(z) + βε

}
(252)

to see the minimizer

β∗ = 1 + |θ|2 +
√

(|θ|2 + 1)EZ∼µl(θ, Z)

ε
. (253)

The DRO problem for linear regression finally becomes:

min
θ

{√
EZ∼µl(θ, Z) +

√
ε(1 + |θ|2)

}
. (254)
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Besides the risk of the original linear regression problem, the robust version also penalizes for a large |θ| (ℓ2 regular-

ization sense). Actually, for the purpose of simplicity, we are taking all norms to be the Euclidean norm. Instead,

one can check that if the norm in the cost function c(x, y) = ∥x− y∥ in the definition of the Wasserstein distance is

taken as any norm, a similar conclusion still holds for the DRO problem as

min
θ

{√
EZ∼µl(θ, Z) +

√
ε∥(θ,−1)∥∗

}
, (255)

where ∥·∥∗ is the dual norm. If we take c(x, y) = ∥x− y∥∞ (W∞ sense), then the DRO problem becomes

min
θ

{√
EZ∼µl(θ, Z) +

√
ε∥(θ,−1)∥1

}
, (256)

which aligns with the square-root LASSO. From this perspective, we can interpret square-root LASSO as the robust

version of linear regression against W∞ adversarial attacks (which was not mentioned in the original paper).
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Adversarial Attack: the Model-Agnostic Case

Now let’s try to understand DRO in the model-agnostic case. In particular, we consider the abstract non-

parametric DRO problem that does not even require knowledge on the form of the model:

inf
f∈F

sup
µ̃

EZ̃∼µ̃l(f, Z̃)− C(µ, µ̃), (257)

where F is a function space in which the model f lives. The loss function still depends on the true model f and the

data Z̃ from the perturbed measure µ̃. Instead of formalizing a constrained optimization, we put the constraints as

regularization terms, requiring the perturbation in µ̃ from µ to be not too crazy.

In a general classification problem, in particular, the data z = (x, y) ∈ Rd × [k] is given, with the label y

indicating the category of the feature x out of k possible categories. F is understood as the set of all measurable soft

classifiers such that ∀f ∈ F , f = (f1, ..., fk) where fl : Rd → [0, 1] and
∑
l fl ≡ 1. Intuitively speaking, fl(x) is the

model predicted confidence level (probability) of the feature x belonging to category l, so the probabilities always

add up to one. When it comes to the loss function, we take zero-one loss for simplicity:

l(f, z) = 1− fy(x). (258)

The loss penalizes predictions far away from the true label. Ideally, a model shall output fy(x) = 1 since feature x

belongs to category y. The penalty in the zero-one loss increases as the probability fy(x) decreases. Finally, C(µ, µ̃)

is taken as:

C(µ, µ̃) := inf
π∈Π(µ,µ̃)

∫
Cz(z, z̃) dπ(z, z̃), (259)

where

Cz(z, z̃) := c(x, x̃)Iy=ỹ +∞Iy ̸=ỹ. (260)

Note that the perturbations shall only happen on the features but not the labels. C is the optimal transport cost

induced by CZ , a ”distance” between z and the perturbed z̃, which is again induced by the ”distance” on the feature

space denoted as c.

Remark. In the context of image classification, given a picture of a cat, the adversary is allowed to change the image

a little bit, but is not allowed to change the label of the picture from ”cat” to something like ”dog”. This matches the

problem setting in reality since the changes in the label are mostly crazy changes that largely confuses the model and

are not considered small perturbations in the data.

Since we don’t allow perturbations in the labels, only the x-marginals of µ and µ̃ are of our interests. Naturally,

we define

µi(·) := µ(· × {i}), µ̃i(·) := µ̃(· × {i}), C(µi, µ̃i) := inf
π∈Π(µi,µ̃i)

∫
c(xi, x̃i) dπ(xi, x̃i). (261)
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Here C(µi, µ̃i) is the OT cost from µ to µ̃, restricted on label i. This implies an additive form of C(µ, µ̃) that

C(µ, µ̃) =

k∑
i=1

C(µi, µ̃i). (262)

At this point, by adding assumptions, we get the DRO for classification problem:

inf
f∈F

sup
µ̃1,...,µ̃k

EZ̃∼µ̃l(f, Z̃)−
k∑
i=1

C(µi, µ̃i). (263)

In the following context, we perform calculations and show its connection with OT. Firstly, notice that strong

duality holds (convex-concave structure), so the problem becomes

inf
µ̃1,...,µ̃k

sup
f∈F

EZ̃∼µ̃fỸ (X̃) +

k∑
i=1

C(µi, µ̃i) = inf
µ̃1,...,µ̃k

sup
f∈F

k∑
i=1

∫
fi(x) dµ̃i(x) +

k∑
i=1

C(µi, µ̃i). (264)

The supremum can be explicitly solved here. There exists a reference measure ν :=
∑k

i=1 µ̃i

k for all µ̃i such that

sup
f∈F

k∑
i=1

∫
fi(x) dµ̃i(x) = sup

f∈F

k∑
i=1

∫
fi(x)

dµ̃i
dν

(x) dν(x) =

∫
sup
f∈F

k∑
i=1

fi(x)
dµ̃i
dν

(x) dν(x). (265)

Clearly, since fi ≥ 0,
∑
i fi ≡ 1 are weights, the supremum in supf∈F

∑k
i=1 fi(x)

dµ̃i

dν (x) is attained when f puts all

its probability mass on the component that attains maxi∈[k]
dµ̃i

dν (x) pointwisely for each x. As a result,

sup
f∈F

k∑
i=1

∫
fi(x) dµ̃i(x) =

∫
max
i∈[k]

{
dµ̃i
dν

(x)

}
dν(x). (266)

Now we want to get rid of the reference measure ν. The best way is to introduce a new measure Λ such that

∀i, µ̃i ≤ Λ, in the sense of measure domination on any measurable sets (NOT absolute continuity!).∫
max
i∈[k]

{
dµ̃i
dν

(x)

}
dν(x) =

∫
max
i∈[k]

{
dµ̃i
dν

(x)

}
dν

dΛ
(x) dΛ(x) =

∫
max
i∈[k]

{
dµ̃i
dΛ

(x)

}
dΛ(x). (267)

Nicely, maxi∈[k]

{
dµ̃i

dΛ (x)
}
≤ 1, with the upper bound 1 to be tight, so

∫
max
i∈[k]

{
dµ̃i
dΛ

(x)

}
dΛ(x) = inf

Λ

∫
1 dΛ(x) = inf

Λ
Λ(X ), (268)

where X is the whole feature space from which x takes values.
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The DRO for classification problem becomes the generalized barycenter problem:

inf
µ̃1,...,µ̃k,Λ

Λ(X ) +

k∑
i=1

C(µi, µ̃i) (269)

s.t. ∀i, µ̃i ≤ Λ. (270)

Recall that the typical barycenter problem has the form infµ
∑
i C(µi, µ), minimizing the (weighted) sum of distances

from each measure to the barycenter. However, in our problem, we minimize the total mass of the generalized

barycenter Λ that dominates all x-marginals of the perturbed measure µ̃. Intuitively speaking, we want to find the

smallest Λ that covers all different parts of µ̃ so we are comparing ”some parts” of the Barycenter Λ with each µ̃i.

Since the ”some parts” of Λ varies as i varies, this is not the same as a conventional Wasserstein barycenter but a

more broadly defined one.

It turns out that the generalized barycenter problem can be converted into an MMOT problem to be solved

numerically. The MMOT has k marginals so one might expect to meet with practical difficulties when k is above

like 20. Interestingly, this is NOT the case in practice. If the cost c is taken as the most natural one, e.g.,

cε(x, x̃) := ∞I|x−x̃|>ε. (271)

Then for A ⊂ [k] as a subset of labels, we might define

CA,ε({xi}i∈A) := inf
x̃

∑
i∈A

cε(xi, x̃). (272)

Such CA,ε({xi}i∈A) is finite (and zero) iff ∃x̃, such that ∀i ∈ A, xi ∈ Bε(x̃), i.e. when one can find a feature that

is close to all features xi that belong to the labels in A. In the example of image classification, if we take A as

”animals”, this is saying that we can find an image that looks similar to any pictures of animals. That certain image

is probably also an image of animals that has labels in A.

As a result, when ε is not too big, it’s typically hard to find some neighborhood that contains a large number

of features with different labels, i.e. the size of A is not that large in practice. In this case, the number of marginals

in MMOT can be reduced to the size of A instead of the large k, which remains numerically feasible to solve. In

the image classification example, we have altogether k = 100 labels. If the criterion of ”similar” is not too trivial,

let’s say we get 50 different values of A, e.g., ”animals”, ”human beings”, ”scenery”, etc. However, within each A

like ”animals”, there are not too many different labels, e.g., only ”cat” and ”dog”. Within ”human beings”, e.g.,

there are only ”elderly”, ”adult” and ”kid”. Within ”scenery”, e.g., there are only ”city”, ”rural”. As a result, the

MMOT on k = 100 marginals (infeasible) can be decomposed into 50 smaller MMOT problems within each value of

A, having only two or three marginals (feasible).

Remark. When solving MMOT in practice, the wisdom is to find special structures to reduce the number of marginals!
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Parameter Inference and Denoising

Let’s consider another application of OT in statistics. We first propose the problem within the framework of

decision theory. Consider parameter θ taking values in the parameter space Θ in the Bayesian setting, i.e., θ ∼ π

follows the prior distribution π. We observe samples generated by the model (likelihood) Z|θ ∼ pθ(·) and the goal is

to find a decision rule δ(z) that maps each observation zi to its parameter θi, in the optimal sense, that minimizes

the mean square risk

min
δ

E(θ,Z)|δ(Z)− θ|2. (273)

From statistics, the minimizer must be the posterior mean

δ∗(Z) = θ(Z) := E(θ|Z). (274)

However, calculating the posterior requires knowledge of the prior, and in most cases we don’t have prior knowledge.

In this case, we are assuming that there exists an underlying unknown prior π.

Nicely, if the distributions belong to the exponential family, then the posterior mean can be directly computed

from the marginal of Z without even knowing the prior. Otherwise, one has to use empirical Bayes methods in

statistics to solve this problem. In some cases, however, an issue called overshrinking appears, i.e., (θ)#µZ ̸= π. For

example, consider prior π to be the uniform distribution on the unit circle C, and pθ(·) to be the two-dimensional

Gaussian N(θ, σ2I). Simple calculations show that

p(θ|z) ∝ Iθ∈C · e−
|z−θ|2

2σ2 . (275)

The posterior mean can be represented by integrals along curves:

θ(z) =

∫
C
θe−

|z−θ|2

2σ2 dθ∫
C
e−

|z−θ|2
2σ2 dθ

=

∫ 2π

0
e−

|z−(cos η,sin η)|2

2σ2 cos η dη∫ 2π

0
e−

|z−(cos η,sin η)|2
2σ2 dη

,

∫ 2π

0
e−

|z−(cos η,sin η)|2

2σ2 sin η dη∫ 2π

0
e−

|z−(cos η,sin η)|2
2σ2 dη

 . (276)

Writing as double integrals,

|θ(z)|2 =

∫ 2π

0

∫ 2π

0
e−

|z−(cos η,sin η)|2

2σ2 e−
|z−(cosµ,sinµ)|2

2σ2 cos(η − µ) dη dµ∫ 2π

0

∫ 2π

0
e−

|z−(cos η,sin η)|2
2σ2 e−

|z−(cosµ,sinµ)|2
2σ2 dη dµ

< 1. (277)

We see that the posterior mean always lies inside the unit circle, so δ(z) never takes values on the unit circle, which

has disjoint support compared to the prior π. This problem does not appear when the support of the prior is the

whole Rd but has a great impact when the support of the prior is a low-dimensional manifold. Easy remedies include

projecting δ(z) back onto the unit circle, but as a cost, the good properties of the posterior mean are lost.
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Instead, we formalize the OT-based denoising problem by adding the hard constraint

δ#µZ = π. (278)

In other words, we are first restricting the space of decision rules and then find the rule that minimizes the risk

from this space. This approach avoids taking projections onto supp(π) after calculating the posterior mean and

still guarantees the optimality of the decision rule at the same time. For the sake of the completeness, we state the

constrained optimization problem

min
δ

E(θ,Z)|δ(Z)− θ|2 (279)

s.t. δ#µZ = π. (280)

The first step is to get rid of θ in the objective by noticing

E(θ,Z)|δ(Z)− θ|2 = E(θ,Z)|δ(Z)− θ(Z) + θ(Z)− θ|2 (281)

= E(θ,Z)|δ(Z)− θ(Z)|2 + E(θ,Z)|θ(Z)− θ|2 + 2E(θ,Z)

〈
δ(Z)− θ(Z), θ(Z)− θ

〉
(282)

= E(θ,Z)|δ(Z)− θ(Z)|2 + E(θ,Z)|θ(Z)− θ|2, (283)

where the second term does not contain δ. As a result, the optimization problem reduces to

min
δ

E(θ,Z)|δ(Z)− θ(Z)|2 (284)

s.t. δ#µZ = π. (285)

The objective can be recognized as an expected cost with c(z, δ(z)) = |δ(z) − θ(z)|2 and δ being a transport map

from µZ to π. This is actually an OT problem if the prior π is given, whereas we are assuming an unknown prior π,

which differs from a traditional OT problem. Consider the regularized version through W 2
2 on the parameter space:

min
δ

E(θ,Z)|δ(Z)− θ(Z)|2 + τW 2
2 (δ#µZ , π). (286)

However, the problem that π is unknown remains unsolved, and some modifications on the regularization are required.

The wisdom is to shift the regularization effect from the parameter space to the space of observations by noticing

that if δ#µZ = π holds, then

µZ = µδ (287)

shall also hold, where

µδ(·) :=
∫
pθ(·) d(δ#µZ)(θ). (288)
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Now that µδ does not contain the unknown π and we aim to solve the transformed problem:

min
δ

E(θ,Z)|δ(Z)− θ(Z)|2 + τW 2
2 (µZ , µδ). (289)

Although the transformed problem has a different objective from the original problem, under the identifiability

condition, i.e.,
∫
pθ(·) dπ1(θ) =

∫
pθ(·) dπ2(θ) implies π1 = π2, as τ → ∞, the minimizer δ∗τ converges to the

minimizer δ∗ of the OT-denoising problem

min
δ

E(θ,Z)|δ(Z)− θ(Z)|2 (290)

s.t. δ#µZ = π. (291)

The change of the objective does not interfere with the limit of the solution, which is the only thing we care

about for solving OT-denoising. Consequently, we can focus on solving the transformed problem, which can be

written in the Kantorovich formulation:

min
γ∈Γ

∫
|θ − θ(z1)|2 + τ |z3 − z4|2 dγ(z1, θ, z3, z4), (292)

Γ :=

{
γ : (P1)#γ = µZ , (P4)#γ = µZ , (P3)#γ =

∫
pθ(·) d(P2)#γ(θ)

}
. (293)

One can prove that if γ∗ solves this MMOT, then (P1,2)#γ
∗ can be written as (id× δ∗τ )#µZ , where δ

∗
τ is a solution

to the transformed problem.

Remark. The Monge formulation can be understood as searching for a non-randomized decision rule, while the

Kantorovich formulation can be can be understood as searching for a randomized decision rule. Here one can prove

that the optimal randomized decision rule exists and must have a non-randomized version, which is the type of

conclusions often seen in decision theory.

The MMOT problem has a special constraint on the second and the third marginals of the coupling, but one

can always do a simulation to figure out the third marginal based on the second marginal.
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Momentum Training on Wasserstein Space

Adding momentum results in the training to be more likely to follow past movements. When considering

momentum in Wasserstein space, we have to talk about the geometry of the lines instead of line segments. First

consider the geodesic formulation. Given µ0, µ1, now consider

µt = [tT + (1− t)id]#µ0, t ∈ R, (294)

where T = ∇f is the optimal transport map for f convex. In this case,

µt = (∇xG)#µ0, G(x) =
1− t

2
|x|2 + tf, (295)

so G is no longer guaranteed convex when t ̸∈ [0, 1]. This implies that the geodesic formulation is bad at dealing

with the geometry of lines.

Instead, we consider the metric interpolation approach.

µt = argmin
µ

{
1− t

2
W 2

2 (µ, µ0) +
t

2
W 2

2 (µ, µ1)

}
, (296)

which has unique solution for ∀t ∈ R. To see why this is the case, let’s assume t > 1 and consider µ = (∇f)#µ1 for

some convex f . At the first glance, the problem

min
f convex

{
1− t

2
W 2

2 ((∇f)#µ1, µ0) +
t

2
W 2

2 ((∇f)#µ1, µ1)

}
(297)

doesn’t seem attractive. The term W 2
2 ((∇f)#µ1, µ1) is nice (convex in ∇f), while W 2

2 ((∇f)#µ1, µ0) is hard to deal

with, as mentioned when we discuss the Wasserstein geometry. However, different from the case of the line segments,

W 2
2 ((∇f)#µ1, µ0) now has a negative coefficient, and

−W 2
2 ((∇f)#µ1, µ0) (298)

is −1 convex in ∇f , i.e., 1
2

∫
|∇f |2 dµ1 −W 2

2 ((∇f)#µ1, µ0) is convex in ∇f .

Remark. The philosophy here is that the term W 2
2 ((∇f)#µ1, µ0) is ”bad” with positive coefficients but ”good” with

negative coefficients.

Rewrite the objective

|1− t|
2

[
−W 2

2 ((∇f)#µ1, µ0) +
t

|1− t|

∫
|∇f(x)− x|2 dµ1(x)

]
(299)

=
|1− t|

2

[1
2

∫
|∇f |2 dµ1 −W 2

2 ((∇f)#µ1, µ0) +

(
t

|1− t|
− 1

2

)∫
|∇f |2 dµ1 (300)

− 2t

|1− t|

∫
⟨∇f(x), x⟩ dµ1(x) +

t

|1− t|

∫
|x|2 dµ1

]
, (301)
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which is now convex in ∇f thanks to the -1 convexity. A similar conclusion holds when t < 0. This implies that the

metric interpolation problem is still a convex optimization problem for ∇f when considering the geometry of lines.
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Open Problems

A collection of open problems from the summer school:

1. Can we obtain an equivalent MMOT for the barycenter problem when there are negative weights λi < 0.

(suspected to be no)

2. Numerics for the OT-denoising MMOT problem.

3. Analyze convergence of back-and-forth via continuous-time PDE analogue, get rate of convergence.

4. Cross entropy loss for the adversarial training problem (no hard constraint), MMOT formulation?

5. Choose a metric for (µ̃1, ..., µ̃k,Λ) to turn adversarial training problem into a PDE which is a gradient flow.

6. Inverse OT, with constraints on the cost, e.g., Lagrangian structure.

7. Special cases of measures for quick calculations of Wasserstein distance.
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