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This note is mainly written based on the author’s experience reading Probability Theory of Mean

Field Games with Applications by Rene Carmona, Francois Delarue and is subject to errors and

typos. You are welcome to read critically and carefully.

Basic Ideas of MFG

Notation and Assumption of Single-period MFG

We neglect the classical setting of stochastic differential games here and only focus on the special settings of mean

field game (MFG) that are worth noting. For notation purpose, we clarify that x−i denotes (x1, ..., xi−1, xi+1, ..., xN ),

(xi, x−i) denotes x = (x1, ..., xi−1, xi, xi+1, ..., xN ) and (x, x−i) denotes (x1, ..., xi−1, x, xi+1, ..., xN ) with the i-th

coordinate replaced with x. J i always denotes the expected total cost of player i (altogether N players), with αi

denotes its control process taking value in A, the space of all admissible control process (assumed to be compact).

Nash equilibrium (NE) (α̂1, ..., α̂N ) ∈ AN is defined as the tuple of control such that for any player, when

all other players’ controls are frozen, this player has no motivation of deviating from it. In simple notations,

∀i ∈ {1, 2, ..., N} ,∀α ∈ A, J i(α̂i, α̂−i) ≤ J i(α, α̂−i) (1)

for theoretical analysis on NE, it’s useful to represent it as a fixed point of the best response function B : AN → AN

defined as

B(α) = β, βi def
= argmin

α
J i(α, α−i) (2)

where βi denotes the best reaction of player i given all other players’ control.

MFG requires strong assumptions on symmetricity of players and the influence of each player diminishing. This

requires us to define the empirical measure

µn
X

def
=

1

n

n∑
i=1

δxi (3)

with X = (x1, ..., xn) ∈ En as given state of all players. The empirical measure is a probability measure on compact

metric space E, we denote the space of all probability measures on E as P(E) and equip this space with the topology

of weak convergence of measures (with a compatible metric ρ on P(E) so it’s compact).

To see the assumptions required for MFG setting, we focus on adding restrictions to the cost functionals J i

when N gets large enough. The following technical lemma helps us figure out what assumptions to put up for MFG

setting.

Lemma 1. ∀n, if un : En → R satisfies uniform boundedness condition

sup
n

sup
X∈En

|un(X)| < ∞ (4)
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and uniform Lipschitz continuity

∃c > 0,∀n, ∀X,Y ∈ En, |un(X)− un(Y )| ≤ cρ(µn
X , µn

Y ) (5)

then exists subsequence unk and Lipschitz continuous U : P(E) → R such that

lim
k→∞

sup
X∈Enk

|unk(X)− U(µnk

X )| = 0 (6)

Remark. Instead of showing the proof (which is an application of Arzela-Ascoli on some auxiliary function), we

show the interpretation of the lemma. Notice that ∀n, un must be symmetric and continuous if it satisfies the

conditions above. The symmetricity is a consequence of uniform Lipschitz continuity (take Y whose components are

permutations of those of X, this does not change the empirical measure, resulting in un(X) = un(Y )). On the other

hand, if Xnp → Xn (p → ∞), µn
Xnp

w→ µn
Xn resulting in un(Xnp) → un(Xn) (p → ∞) proves the continuity of un.

As a result, those two conditions in the lemma have already contained strong assumptions on symmetricity. The

conclusion is saying that at least along some subsequence, the function unk can be uniformly well approximated as a

regular function of the empirical measure if there are enough players.

Inspired by the lemma above, we put up the assumption called large symmetric cost functional that

∀N, ∃JN : AN → R such that
∀N,α ∈ AN , JN,i(α) = JN (αi, α−i)

supN supα∈AN |JN (α)| < ∞

∃c > 0,∀N, ∀α, β ∈ AN , |JN (α)− JN (β)| ≤ c
[
dA(α

1, β1) + ρ(µN−1
α−1 , µN−1

β−1 )
] (7)

where JN,i is the cost functional of player i, having the same meaning as J i, dA is the metric on A. Viewing

JN (α) = JN (α1, α−1) with the control of player 1 separated (due to the form of the third assumption in large

symmetric cost functional), the same proving procedure tells us ∃J : A× P(A) → R continuous and a subsequence

Nk such that

lim
k→∞

sup
αNk∈ANk

|JNk(αNk,1, ..., αNk,Nk)− J(αNk,1, µNk−1
αNk,−1)| = 0 (8)

in simple words, for each player (e.g. player 1), the cost functional can be uniformly well approximated in a

way that all other players make a difference to the cost functional only through the empirical measure which is

µNk−1
αNk,−1 = 1

Nk−1

∑Nk

i=2 δαNk,i .

So far, we have put up the large symmetric cost functional assumption providing us with a limiting cost

functional J as an approximation to the cost functional of each player when N → ∞. However, it should also

be expected that MFG can be represented in terms of some population measure µ as some kind of weak limit of

the sequence of empirical measures. If this is the case, MFG will have a simple structure since we only have to

play with the limiting functional and population measure J, µ instead of a sequence of cost functional and empirical
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measures. The following theorem adopts such intuition and add some extra conditions to ensure the existence and

good properties of population measure as weak limit.

Theorem 1. Assume for ∀N , α̂N = (α̂N,1, ..., α̂N,N ) is NE for the game with cost functional JN,1, ..., JN,N that

satisfies the large symmetric cost functional assumption. Moreover, assume that

∃c > 0,∀N,α ∈ A,µ ∈ P(A), ρ

(
µ,

N − 1

N
µ+

1

N
δα

)
≤ c

N
(9)

then there exists subsequence Nk and continuous J : A× P(A) → R such that

µNk

α̂Nk

w→ µ̂ ∈ P(A) (k → ∞) (10)

with

lim
k→∞

sup
αNk∈ANk

|JNk(αNk,1, ..., αNk,Nk)− J(αNk,1, µNk−1
αNk,−1)| = 0 (11)

and ∫
A

J(α, µ̂)µ̂(dα) = inf
µ∈P(A)

∫
A

J(α, µ̂)µ(dα) (12)

Remark. The second conclusion has been proved using the technical lemma, and since A is compact, µNk

α̂Nk
∈ P(A)

is tight, by Prokhorov’s theorem, it has weak subsequential limit proves the existence of µ̂. The proof of the last

conclusion requires the similar technique as the proof of the technical lemma above, omitted here.

The interpretation of the last conclusion is crucial for the setting of MFG. Let’s specify µ = δα0
where α0 =

argminα J(α, µ̂) to see

J(α0, µ̂) = inf
µ∈P(A)

∫
A

J(α0, µ̂)µ(dα) ≤ inf
µ∈P(A)

∫
A

J(α, µ̂)µ(dα) ≤ J(α0, µ̂) (13)

so ∫
A

J(α, µ̂)µ̂(dα) = J(α0, µ̂) (14)

now denote Aµ̂ = {α0 ∈ A : α0 = argminα J(α, µ̂)} as the collection of all controls minimizing the limiting cost

functional at the population measure,∫
A

J(α, µ̂)µ̂(dα) = J(α0, µ̂) · µ̂(Aµ̂) +

∫
A−Aµ̂

J(α, µ̂)µ̂(dα) ≤ J(α0, µ̂) · µ̂(Aµ̂) (15)
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proves µ̂(Aµ̂) = 1. Conversely, if µ̂(Aµ̂) = 1,
∫
A
J(α, µ̂)µ̂(dα) = J(α0, µ̂) immediately proves∫

A

J(α, µ̂)µ̂(dα) = inf
µ∈P(A)

∫
A

J(α, µ̂)µ(dα) (16)

as a result, this conclusion is saying that the support of population measure µ̂ is contained in the set of

minimum argminα J(α, µ̂).

At this point, the setting of MFG shall be clear, which only depends on the limiting cost functional J and the

population measure µ̂ of a single representative player. MFG is a game of N identical players as N → ∞ and we care

about the NE of MFG. Different from finite player game, there is an extra population measure in MFG, resulting in

the fact that MFG has to take into consideration both optimality (minimizing the cost functional) and consistency

(each player shall behave according to the population measure) conditions. The basic strategy for MFG is to

fix population measure as µ, solve out the set of best control for fixed µ:

Aµ = argmin
α∈A

J(α, µ) (17)

and find a measure µ̂ that is concentrated on the arguments of the minimization Aµ̂. Notice that the

restrictions on µ̂ directly comes from the conclusion in the theorem above that∫
A

J(α, µ̂)µ̂(dα) = inf
µ∈P(A)

∫
A

J(α, µ̂)µ(dα) (18)

equivalently speaking,

supp(µ̂) ⊂ argmin
α∈A

J(α, µ̂) (19)

the solution to MFG is the population measure µ̂ and the control α̂ following the population measure µ̂ is a NE

since it’s the fixed point of the best response function (notice that all other players’ control only make a difference

through the population measure as N gets large enough).

Instead of existence of the solution, the uniqueness of the solution to this single-period MFG is not always

guaranteed. One criterion for uniqueness is based on the strictly monotone property of J .

Theorem 2. The solution to the single-period MFG is unique if J is strictly monotone, i.e.

∀µ1 ̸= µ2,

∫
A

[J(α, µ1)− J(α, µ2)] [µ1 − µ2](dα) > 0 (20)

Proof. We prove it from definition that if µ1, µ2 are two different solutions to the MFG,∫
A

J(α, µ1)µ1(dα) ≤
∫
A

J(α, µ1)µ2(dα),

∫
A

J(α, µ2)µ2(dα) ≤
∫
A

J(α, µ2)µ1(dα) (21)

sum up to find a contradiction with the strictly monotone condition.
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An Example of Mean Field Approximation

Consider the setting when a meeting is planned to start at deterministic time t≥0, player i has its control α
i = ti

as the time planned to attend the meeting. However, there is random effect so player i actually attends meeting at

time Xi with

Xi = αi + σiεi (22)

where ε1, ε2, ...
i.i.d.∼ N(0, 1), σ1, σ2, ...

i.i.d.∼ ν with ν has its support on (0,∞) and the sequence εi is independent of

the sequence σi. The cost functional of player i is

J i(α) = E[a(Xi − t0)
+ + b(Xi − t)+ + c(t−Xi)+] (23)

when the meeting actually starts at time t instead of the original planned time t0. The actual starting time t is

actually determined based on the arrival time of all players, i.e.

t = τ(µN
X) (24)

for some deterministic function τ (e.g. start the meeting when a certain percentage of players arrive). This game

is a one-period game so there’s no SDE dynamics and the only interaction between players is through the empirical

measure µN
X (but this empirical measure is a measure on the state space, not control space).

If we treat this game as a finite player game, to get NE we need to do optimization

∀i ∈ {1, 2, ..., N} , inf
αi

J i(α) (25)

and the biggest trouble comes from the empirical measure that couples N optimization problems.

However, as long as we know that N is large enough, since εi, σi are i.i.d. sequence of random variables and the

cost functional satisfies the large symmetric cost functional assumption for MFG, MFG approximation allows us to

have µN
X

w→ µ (N → ∞) and to replace t = τ(µN
X) with t = τ(µ) (since MFG approximation happens simultaneously

for the empirical measure and the cost functional). At this point, we just need to solve the optimization for a

representative player with cost functional

J(α, µ) = E[a(X − t0)
+ + b(X − t)+ + c(t−X)+] (a, b, c > 0) (26)

where t = τ(µ), X = α+ σε with α as the control. For fixed µ, i.e. fixed t, let’s do the minimization

Aµ = argmin
α

J(α, µ) (27)

7
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take weak derivative for J w.r.t. α to find

∂J

∂α
= aP (α+ σε− t0 > 0) + bP (α+ σε− t > 0)− cP (−α− σε+ t > 0) (28)

if we denote Z = σε and F the CDF of Z, since Z has symmetric distribution around zero, F (z) + F (−z) = 1 so

Aµ = {α ≥ 0 : aF (α− t0) + (b+ c)F (α− t) = c} (29)

is determined implicitly by the equation on α. Since zero is not in the support of ν where σ ∼ ν, F is strictly positive,

strictly increasing and continuous, it’s then obvious that Aµ only contains a single point for fixed µ (the equation

has unique solution).

That’s all the work for the first optimization step, and the next step is to find the population measure that

satisfies the consistency condition, that is to find measure µ̂
d
= α̂+σε such that α̂ is consistent with µ̂. It’s clear that

µ̂ is a measure on R+ induced by CDF F (z − α̂) so we denote the measure µ̂ as F (· − α̂). When the representative

player takes NE control α̂ and the population measure is µ̂, we know that α̂ ∈ Aµ̂ resulting inaF (α̂− t0) + (b+ c)F (α̂− t) = c

t = τ(F (· − α̂))
(30)

as an equation w.r.t. α̂ (notice that τ maps a measure to a real number). With come constraints on τ added, one is

able to ensure the existence and uniqueness of α̂ as the solution to the equations above and the solution to MFG

is just µ̂ = F (· − α̂).

Remark. Although it’s not relevant to MFG, I would like to show the method of arguing the existence and uniqueness

of α̂ by adding constraints on τ since it’s a typical and crucial application of the contraction mapping theorem.

Let’s assume τ always takes value no less than t0, is monotone, i.e. ∀α ≥ 0, if µ([0, α]) ≤ µ′([0, α]) then

τ(µ) ≥ τ(µ′) and has sub-additivity, i.e. ∀α ≥ 0, τ(µ(· − α)) ≤ τ(µ) + α.

The proof starts from building G : R+ → R+ mapping α to G(α) such that α̂ is the fixed point of G.

Function G first maps α to a measure F (· − α) then to a real number t = τ(F (· − α)) then to α(t) determined by

the equation aF (α − t0) + (b + c)F (α − t) = c for given t. It’s quite obvious that if we input α̂, the output will be

G(α̂) = α̂ so it’s the fixed point of G.

The next step is to show that G is a contraction mapping. Take x, y ∈ R+, x < y, by monotonicity

τ(F (· − x)) ≤ τ(F (· − y)) and by sub-additivity τ(F (· − y)) ≤ τ(F (· − x)) + (y − x) provides bounds for the first two

mapping steps (map real number α to a measure and to a real number t again). The remaining step is the last step

implicitly mapping t to α(t). Implicit function theorem is thus necessary. Assume

H(α, t) = aF (α− t0) + (b+ c)F (α− t)− c (31)

and check ∂H
∂α = aF ′(α− t0)+ (b+ c)F ′(α− t) > 0 since F is strictly increasing and a, b, c > 0, H is also continuous

8
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with continuous partial derivatives, so H(α, t) = 0 determines C1 function α(t) with

dα(t)

dt
=

(b+ c)F ′(α(t)− t)

aF ′(α(t)− t0) + (b+ c)F ′(α(t)− t)
(32)

since F ′ > 0, the derivative only takes value in (0, C) with constant 0 < C < 1. Now we denotetx = τ(F (· − x))

ty = τ(F (· − y))
(33)

and calculate

|G(y)−G(x)| = |α(ty)− α(tx)| ≤ C|ty − tx| ≤ C|y − x| (34)

with 0 < C < 1 proves that G is contraction mapping proves the existence and uniqueness of α̂ as the fixed point.

The difficulty here is that a real number is first mapped to a measure then to a real number again

under some implicit function. However, by following the spirit of fixed point iteration, it’s not hard

to construct G and show that it’s a contraction mapping by adding necessary conditions.

This example shows from the beginning how we approximate finite player game with MFG for one-period game

and how to solve one-period MFG following the strategy mentioned above. The continuous-time MFG will be much

harder to solve, but the approximation and solution follows the similar logic that we always care about optimality

and consistency conditions.

For more details and interpretations on the mean field approximation for single-period game, please refer to my

handwritten notes Notes on Mean Field Approximation of Single-Period Games on my personal website.
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Probabilistic Approach to Finite Player Game

Finite Player Game and Different Types of NE

Here we quickly review the setting of finite player game and the probabilistic approach to solving finite player

games. Most of the details are omitted and only notations are introduced. In the continuous time setting, different

players’ states are coupled through SDE dynamics (a Markovian diffusion)dXt = B(t,Xt, αt) dt+Σ(t,Xt, αt) dWt

X0 = x0

(35)

where X takes value in RN denoting the states of all players. Written in terms of each player,dXi
t = bi(t,Xt, αt) dt+ σi(t,Xt, αt) dW

i
t + σ0(t,Xt, αt) dW

0
t

Xi
0 = xi

0

(36)

where W 0 is a BM denoting the common noise shared by all players (often we neglect this) and the time horizon

of the game is always assumed to be [0, T ]. We add assumptions called Game here to ensure the existence and

uniqueness of the solution to the coupled SDE system and to guarantee measurability. It’s not very interesting to

investigate those assumptions carefully so they are just listed here for the purpose of completeness

∀S ∈ [0, T ], (t, ω, x, α) 7→ (B,Σ)(t, ω, x, α) progressive measurable

∃c > 0,∀t ∈ [0, T ], ω, x, x′, α, α′, |B(t, ω, x, α)−B(t, ω, x′, α′)|+ |Σ(t, ω, x, α)− Σ(t, ω, x′, α′)| ≤ c(|x− x′|+ |α− α′|)

∀α,E
∫ T

0
|B(t, 0, αt)|2 + |Σ(t, 0, αt)|2 dt < ∞

∀S ∈ [0, T ], (t, ω, x, α) 7→ f i(t, ω, x, α) progressive measurable

(ω, x) 7→ gi(ω, x) measurable

(37)

here f i is the running cost while gi is the terminal cost, together they provide the cost functional of player i

J i(α) = E

[∫ T

0

f i(s,Xs, αs) ds+ gi(XT )

]
(38)

Next we introduce different types of NE. The open loop NE allows each player’s control to depend on current

time, initial state and the whole BM trajectory so far

αi
t = ϕi(t,X0,W[0,t]) (39)

where ϕi is a deterministic function. In special case where αi
t has no dependence on W , we call it an open loop

deterministic NE.

10
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Remark. The crucial point to understand here is that open loop NE admits no feedback, i.e. even after player i

changes its strategy from α̂i to αi, α̂−i maintains its original trajectory.

On the other hand, closed loop NE allows the dependence of control on the current time and the whole state

trajectory so far

αi
t = ϕi(t,X[0,t]) (40)

notice that X depends on α in its dynamics so it’s actually an implicit equation w.r.t. α. Closed loop NE has

feedback effect in that the change of control of player i results in the change of control of all other players (αi
t affects

Xt and affects αj
t (j ̸= i)).

The final useful notion of NE is the Markovian NE allowing the control to depend on current time, initial

state, and current state

αi
t = ϕi(t,X0, Xt) (41)

this NE also has feedback effect but it’s different from the closed loop NE in that the control cannot depend on past

states. Generally, open loop NE is the easiest to derive but not very practically useful, closed loop NE is the hardest

to derive but the closest to reality. As a trade-off between those two, Markovian NE is not so hard to derive and

also has practical interpretations.

11
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Classical Approach Solving Finite Player Game

It should be familiar that PDE approach and BSDE approach are the two most useful approaches solving NE

for finite player game. The PDE approach is based on dynamic programming principle (DPP) and can only deal

with Markovian NE while the BSDE approach is based on Pontryagin’s maximum principle and can deal with all

different kinds of NE. The proof of those approaches is neglected and can be found in the book as a generalization

to that of single player game.

PDE approach solves Markovian NE by putting up the value function of player i thinking backwardly

V i(t, x) = inf
αi

E

[∫ T

t

f i(s,Xs, (α
i
s, α

−i
s )) ds+ gi(XT )

∣∣∣Xt = x

]
(42)

where α−i
s = ϕ∗,−i(s,Xs) since the NE is Markovian. DPP then provides the Hamilton-Jacobi-Bellman equation

(HJBE) that describes the evolution of the value function of player i∂tV
i + infαi∈Ai

{
∂xV

i ·B(t, x, α) + 1
2Tr(∂xxV

i · Σ(t, x, α) · ΣT (t, x, α)) + f i(t, x, α)
}
= 0

V i(T, x) = gi(x)
(43)

Remark. Notice that in the HJBE of player i we have

α = (αi, ϕ∗,−i(t, x)) (44)

since player i can only manage to determine αi, all α−i shall be treated as α−i(t, x), a function of current

time t and current state x that has feedback effects.

For linear-quadratic games, when there’s sufficient symmetricity it’s always possible to derive the closed-form

solution. Typically the first step is to solve the inf in the HJBE of player i to get the Markovian NE α̂i (an expression

containing V i, t, x, α−i(t, x)) for i ∈ {1, 2, ..., N}, plug it back into HJBE and raise an ansatz (typically a quadratic

form) to get N coupled Ricatti equations. Solve the Ricatti equations and plug back into the expression for α̂i to

solve the Markovian NE.

It’s quite obvious that HJBE is a necessary condition to satisfy for value functions, so rigorously speaking

verification steps are required to argue that the solution to the HJBE must be the value function (sufficiency). In

practice, however, verification step is always skipped when the finite player game is well-posed. Here we list a set

of assumptions called N-Nash system that ensures the uniqueness of the solution to the Nash system that is

smooth enough. This set of assumptions makes sure that skipping the verification step causes no problems. Although

12
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it’s also not interesting to look into those assumptions, I list them here for reference.

A(N) is bounded

B bounded, uniformly Lipschitz in α

Σ uncontrolled (free of α), bounded cts, uniformly Lipschitz in x,ΣΣT uniformly nondegenerate

f i bounded, uniformly Lipschitz in α, gi bounded Lipschitz

Minimizer in Issac condition uniformly Lipschitz in y

(45)

To introduce the Issac condition, we need the notion of Hamiltonian of player i which is also crucial in

Pontryagin’s maximum principle defined as

Hi(t, x, yi, zi, α) = B(t, x, α) · yi +Tr(ΣT (t, x, α) · zi) + f i(t, x, α) (46)

Issac condition holds if ∃α̂(t, x, y, z) such that ∀i,∀t ∈ [0, T ], x, y, z,∀αi,

Hi(t, x, yi, zi, α̂(t, x, y, z)) ≤ Hi(t, x, yi, zi, (αi, α̂−i(t, x, y, z))) (47)

Let’s recall that Potryagin’s maximum principle in single player game, telling us to minimize the Hamiltonian

in minimization problems w.r.t. α, resulting in

α̂(t, x, y, z) = argmin
α

H(t, x, y, z, α) (48)

and put up the adjoint BSDE together with the FSDE dynamics to get FBSDE systems

dXt = b(t,Xt, α̂(t,Xt, Yt, Zt)) dt+ σ(t,Xt, α̂(t,Xt, Yt, Zt)) dWt

X0 = x0

dYt = −∂xH(t,Xt, Yt, Zt, α̂(t,Xt, Yt, Zt)) dt+ Zt dWt

YT = ∂xg(XT )

(49)

the solution to the system gives optimal control α̂. This method is basically the same in multi player game with the

only exception to separate by cases when solving different kinds of NE.

We start with the BSDE approach for open loop NE. In this case, there are no feedback effects so let’s

simply minimize Hamiltonian of each player

α̂i(t, x, yi, zi) = argmin
αi

Hi(t, x, yi, zi, (αi, α−i)) (50)

13
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and put up the adjoint BSDE together with the FSDE dynamics to get FBSDE systems

dXi
t = bi(t,Xt, α̂

i(t,Xt, Y
i
t , Z

i
t)) dt+ σi(t,Xt, α̂

i(t,Xt, Y
i
t , Z

i
t)) dW

i
t

X0 = x0

dY i
t = −∂xH

i(t,Xt, Y
i
t , Z

i
t , α̂(t,Xt, Y

i
t , Z

i
t)) dt+ Zi

t dWt

Y i
T = ∂xg

i(XT )

(51)

solve it to get open loop NE. The verification condition only requires convexity of Hi in (x, αi) and the convexity of

gi that can be easily verified.

When it comes to the BSDE approach for Markovian NE, the only difference appears in the adjoint BSDE

where −∂xH
i makes a difference. In the open loop case, Hi = Hi(t, x, y, z, (αi, α−i)) with α−i not depending on x

since there’s no feedback effect. However, in the Markovian case,

Hi = Hi(t, x, yi, zi, (αi, α−i(t, x))), α−i(t, x) = ϕ∗,−i(t, x) (52)

and this is definitely changing the expression of ∂xH
i. Let’s collect all dependencies on x of Hi denoting

H−i(t, x, yi, zi, αi) = Hi(t, x, yi, zi, (αi, ϕ∗,−i(t, x))) (53)

the driver in the adjoint BSDE for player i is actually ∂xpH
−i, an easy application of chain rule shows

∂xp
H−i = ∂xp

Hi(t, x, yi, zi, (αi, ϕ∗,−i(t, x))) +
∑
j ̸=i

∂αjHi(t, x, yi, zi, (αi, ϕ∗,−i(t, x))) · ∂xp
αj (54)

where αj = ϕ∗,j(t, x) (j ̸= i) is a function in terms of t, x from the perspective of player i. As a result, there is

one more summation term in the driver of the adjoint BSDE and following the same procedure we get the

Markovian NE

α̂i(t, x, yi, zi) = argmin
αi

Hi(t, x, yi, zi, (αi, α−i(t, x))) (55)

get FBSDE systems 

dXi
t = bi(t,Xt, α̂

i(t,Xt, Y
i
t , Z

i
t)) dt+ σi(t,Xt, α̂

i(t,Xt, Y
i
t , Z

i
t)) dW

i
t

X0 = x0

dY i
t = −

[
∂xH

i +
∑

j ̸=i ∂αjHi · ∂xϕj(t,Xt)
]
dt+ Zi

t dWt

Y i
T = ∂xg

i(XT )

(56)

the verification step still depends on the convexity of Hi and gi same as that for the open loop NE.

14
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Example: Linear Quadratic (LQ) Flocking Model

For detailed explanation on the systemic risk model, please refer to my notes on stochastic control or chapter

2.5 in the book.

In this model, there are N players (birds), with player i having position Xi
t at time t taking value in R3. Player

i can determine its control αi
t as the velocity at time t and the state dynamics is given as

dXi
t = αi

t dt+ σ dW i
t (57)

on time horizon [0, T ]. Player i has cost functional

J i(α) = E
∫ T

0

f i(t,Xt, αt) dt (58)

with no terminal cost and the running cost is

f i(t, x, α) =
κ2

2
|xi − x|2 + 1

2
|αi|2 (59)

with | · | denoting the vector ℓ2 norm since xi, αi take values in R3. This is a LQ game with mean field interaction

through |xi − x|2 so we expect to be able to find the closed-form solution.

Let’s first work for the open loop NE. Since the diffusion coefficient is constant in the dynamics, reduced

Hamiltonian can be used

Hi(t, x, yi, zi, α) = α · yi + f i(t, x, α) (60)

=

N∑
j=1

αj · yi,j + κ2

2
|xi − x|2 + 1

2
|αi|2 (61)

to clarify, yi,1, ..., yi,N take values in R3. Minimize Hi w.r.t. αi to see

α̂i = −yi,i (62)

holds for ∀i ∈ {1, 2, ..., N} by symmetricity. Now since W i is a BM in R3, it’s clear that player i has process Zi,j,k

such that i, j, k ∈ {1, 2, ..., N} and Zi,j,k takes value in R3. At this point, we write down the adjoint BSDE for player

i

dY i,j
t = −∂xjHi(t,Xt, Y

i
t , Z

i
t , α̂t) dt+

n∑
k=1

Zi,j,k
t dW k

t (63)
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calculate ∂xjHi = κ2(xi − x)(δij − 1
N ) and plug in to see the adjoint BSDE

dY i,j
t = −κ2(Xi

t −Xt)

(
δij −

1

N

)
dt+

n∑
k=1

Zi,j,k
t dW k

t (64)

with terminal condition Y i,j
T = 0 since gi ≡ 0. We derive the FBSDE system by replacing α with α̂

dXi
t = −Y i,i

t dt+ σ dW i
t

dY i,j
t = −κ2(Xi

t −Xt)
(
δij − 1

N

)
dt+

∑n
k=1 Z

i,j,k
t dW k

t

Y i,j
T = 0

(65)

put up the affine ansatz (always used in LQ game) with deterministic ηt

Y i,j
t = ηt(X

i
t −Xt)

(
δij −

1

N

)
(66)

differentiate both sides

dY i,j
t =

(
δij −

1

N

)[
η̇t(X

i
t −Xt) dt+ ηt d(X

i
t −Xt)

]
(67)

it’s not hard to figure out d(Xi
t −Xt) from the FSDE that

d(Xi
t −Xt) = −ηt(X

i
t −Xt)

(
1− 1

N

)
dt+ σ( dW i

t − dW t) (68)

a comparison principle of BSDE shows that the dt, dWt part must be equal correspondingly−κ2(Xi
t −Xt)

(
δij − 1

N

)
=
(
δij − 1

N

) [
η̇t(X

i
t −Xt)− η2t (X

i
t −Xt)(1− 1

N )
]

Zi,j,k
t =

(
δij − 1

N

)
ηtσ

(
δi,k − 1

N

) (69)

simplify to get η2t (1− 1
N )− κ2 = η̇t

Zi,j,k
t = σ

(
δij − 1

N

) (
δi,k − 1

N

)
ηt

(70)

the ODE w.r.t. ηt has terminal condition ηT = 0 can be solved easily (Ricatti equation) gives the closed-form open

loop NE to this game. The verification step is obvious since Hi is convex in (x, αi).

Then, let’s solve the Markovian NE through BSDE approach. The Hamiltonian remains the same while

Hi(t, x, yi, zi, α) = αi · yi,i +
N∑

l=1,l ̸=i

ϕl(t, x) · yi,l + κ2

2
|xi − x|2 + 1

2
|αi|2 (71)
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since for player i, all other players’ controls have feedback effects αl = ϕl(t, x) (l ̸= i). Minimize Hi w.r.t. αi to see

α̂i = −yi,i (72)

still holds for ∀i ∈ {1, 2, ..., N} but if we calculate the derivative of Hi w.r.t. xj to get

∂xjHi = κ2(xi − x)

(
δij −

1

N

)
+

N∑
l=1,l ̸=i

∂xjϕl(t, x) · yi,l (73)

the last summation depends on the specific form of ϕl. At this step, ansatz has to be raised prior to the construction

of FBSDE in order to proceed. From the open loop NE procedure exhibited above, we naturally put up an ansatz

for the feedback function

ϕl(t, x) =

(
1− 1

N

)
(xl − x)µt (74)

with deterministic µt. Simple calculation shows ∂xjϕl(t, x) =
(
1− 1

N

) (
δjl − 1

N

)
µtI and the FBSDE is provided as

dXi
t = −Y i,i

t dt+ σ dW i
t

dY i,j
t = −

[
κ2(Xi

t −Xt)
(
δij − 1

N

)
+
(
1− 1

N

)
µt

∑N
l=1,l ̸=i

(
δjl − 1

N

)
Y i,l
t

]
dt+

∑n
k=1 Z

i,j,k
t dW k

t

Y i,j
T = 0

(75)

to solve this FBSDE, put up the same ansatz as before

Y i,j
t = µt(X

i
t −Xt)

(
δij −

1

N

)
(76)

again comparison principle of BSDE tells usµ̇t =
(
1− 1

N

)2
µ2
t − κ2

Zi,j,k
t =

(
δij − 1

N

)
µtσ

(
δi,k − 1

N

) (77)

after some simplifications. Together with µT = 0, it’s another Ricatti equation which can be easily solved to get the

Markovian NE. This example shows us that open loop NE and Markovian NE are generally different although they

have similar forms (ODE for ηt and µt).
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Probabilistic Approach to MFG

Problem Setting

The problem setting of MFG has state dynamics for player i asdXi
t = b(t,Xi

t , µ
N−1

X−i
t

, αi
t) dt+ σ(t,Xi

t , µ
N−1

X−i
t

, αi
t) dW

i
t

Xi
0 = ξ

(78)

on time horizon [0, T ]. Notice that b, σ, ξ are identical among all players and other players’ states affect player i’s

state only through the empirical measure. The cost functional of player i has form

J i(α) = E

[∫ T

0

f(t,Xi
t , µ

N−1

X−i
t

, αi
t) dt+ g(Xi

T , µ
N−1

X−i
T

)

]
(79)

with f, g identical among all players such that the large symmetric cost functional assumption holds.

To solve a MFG, we only have to consider a representative player, fix the flow of probability measure µ =

{µt}0≤t≤T and solve the stochastic control problem to get the optimal control α̂ = α̂(µ) as a function of µ. Such

α̂(µ) induces the state evolution X̂µ depending on µ, so we just need to find a flow µ such that

∀t ∈ [0, T ],L
(
X̂µ

t

)
= µt (80)

where L (·) denotes the law/distribution of random variable. This condition ensures the consistency of state evolution

and empirical measure, providing such µ as the solution to MFG. It’s quite easy to understand that the first step

solving stochastic control problem ensures optimality while the second step finding flow µ ensures consistency.

Remark. In this setting of MFG, we don’t distinguish between open loop NE and Markovian NE any longer since

when N → ∞, they are gonna be asymptotically the same (a nontrivial fact).

For simplicity, we also assume that when fixing µ and solving out the optimal control α̂(µ), the minimizer is

unique for any flow µ.

The Hamiltonian of this MFG is still defined as

H(t, x, µ, y, z, α) = b(t, x, µ, α) · y + σ(t, x, µ, α) · z + f(t, x, µ, α) (81)

and when the diffusion coefficient is free of control, i.e. σ = σ(t, x, µ), reduced Hamiltonian

H(t, x, µ, y, α) = b(t, x, µ, α) · y + f(t, x, µ, α) (82)

can be used in place of the original one.
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Analytic Approach to MFG

Recall that we first replace the empirical measure with a measure flow µ and freeze the flow µ to solve the optimal

control α̂(µ) for the representative player. This problem is a standard single player game and can be transformed

into solving HJBE in the Markovian case. With the definition of value function

V (t, x) = E

[∫ T

t

f(s,Xs, µs, αs) ds+ g(XT , µT )
∣∣∣Xt = x

]
(83)

where X,α denotes the state and control of the representative player, HJBE tells us

∂tV + inf
α

{
b(t, x, µt, α) · ∂xV +

1

2
Tr(σ(t, x, µt, α)σ

T (t, x, µt, α)∂xxV ) + f(t, x, µt, α)

}
= 0 (84)

with terminal condition V (T, x) = g(x, µT ).

On the other hand, we want to describe the evolution of measure flow µ after solving α̂(µ) (from the HJBE

listed above) such that ∀t ∈ [0, T ], µt = L
(
X̂µ

t

)
where X̂µ is generated by taking the control α̂(µ). Recall that the

propagation of measure flow is described by the Fokker-Planck equation with given initial condition. Since the state

dynamics of the representative player now becomesdX̂µ
t = b(t, X̂µ

t , µt, α̂t(µ)) dt+ σ(t, X̂µ
t , µt, α̂t(µ)) dWt

X̂µ
0 = ξ

(85)

the Fokker-Planck equation is ∂tµt − L∗µt = 0

µ0 = L (ξ)
(86)

where L∗ is the adjoint of the infinitesimal generator L with action

L∗f = −divx(b · f) +
1

2
Tr(∂xx(σσ

T f)) (87)

explicitly written out to get∂tµt + divx(b(t, x, µt, α̂t(µ)) · µt)− 1
2Tr

[
∂xx(σ(t, x, µt, α̂t(µ)) · σT (t, x, µt, α̂t(µ)) · µt)

]
= 0

µ0 = L (ξ)
(88)

the HJBE coupled with the Fokker-Planck equation provides the analytic approach to MFG. Notice that

HJBE has given terminal condition and Fokker-Planck equation has given initial condition. Notice that µ = µ(t, x)

can be understood as the density of X̂µ
t (if density exists) so t is the time variable and x is the space variable, i.e.

for each fixed time t, µ(t, ·) is a density function.
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Remark. div is the divergence operator, for vector field F = (F1, ..., Fn), divxF =
∑n

i=1
∂Fi

∂xi
= ∇ · F .

One might be confused why the adjoint of infinitesimal generator contains the divergence operator, let’s do a

simple derivation here as review. From the definition of adjoint, ⟨Lf, g⟩ = ⟨f, L∗g⟩ where the inner product is the

standard one defined on L2 function space ⟨f, g⟩ =
∫
f(x) · g(x) dx.

⟨Lf, g⟩ =
∫

Lf(x) · g(x) dx (89)

=

∫
(b · ∂xf) · g +

1

2
Tr(σσT∂xxf) · g dx (90)

here assume that b = (b1, ..., bn) takes value in Rn and σ takes value in Rn×m, do integration by parts to see

⟨Lf, g⟩ =
n∑

i=1

∫
bi · ∂xif · g dx+

1

2
Tr

(∫
g · σσT∂xxf dx

)
(91)

= −
n∑

i=1

∫
f · ∂xi(bi · g) dx− 1

2
Tr

[∫
∂x
(
g · σσT

)
· ∂xf dx

]
(92)

=

∫ [
−

n∑
i=1

∂xi(bi · g)

]
· f dx+

1

2
Tr

[∫
∂xx

(
g · σσT

)
· f dx

]
(93)

=

∫
−divx(b · g) · f dx+

∫
1

2
Tr
[
∂xx

(
g · σσT

)]
· f dx (94)

we conclude

L∗g = −divx(b · g) +
1

2
Tr
[
∂xx

(
g · σσT

)]
(95)

In special cases where the diffusion coefficient of the dynamics is free of control, i.e. σ = σ(t, x, µ),

the HJBE together with the Fokker-Planck equation has a simpler representation. Consider minimizing the reduced

Hamiltonian w.r.t. α to get

α̂(t, x, µ, y) = argmin
α

H(t, x, µ, y, α) = argmin
α

{b(t, x, µ, α) · y + f(t, x, µ, α)} (96)

it’s obvious that α̂(t, x, µt, ∂xV ) minimizes the expression inside the inf in the HJBE.

Remark. Such minimizer α̂ is guaranteed to exist and is unique with sufficient regularity conditions stated in lemma

3.3 under a set of assumptions.

At this point, HJBE can be reduced to

∂tV +
1

2
Tr(σ(t, x, µt)σ

T (t, x, µt)∂xxV ) +H(t, x, µt, ∂xV, α̂(t, x, µt, ∂xV )) = 0 (97)
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and Fokker-Planck equation can be reduced to

∂tµt + divx(b(t, x, µt, α̂(t, x, µt, ∂xV )) · µt)−
1

2
Tr
[
∂xx(σ(t, x, µt) · σT (t, x, µt) · µt)

]
= 0 (98)

written together with the terminal condition and initial condition, when a MFG has uncontrolled diffusion

coefficient, the analytic approach is to minimize reduced Hamiltonian and solve HJBE together with

the Fokker-Planck equation

α̂(t, x, µ, y) = argminα H(t, x, µ, y, α) = argminα {b(t, x, µ, α) · y + f(t, x, µ, α)}

∂tV + 1
2Tr(σ(t, x, µt)σ

T (t, x, µt)∂xxV ) +H(t, x, µt, ∂xV, α̂(t, x, µt, ∂xV )) = 0

V (T, x) = g(x, µT )

∂tµt + divx(b(t, x, µt, α̂(t, x, µt, ∂xV )) · µt)− 1
2Tr

[
∂xx(σ(t, x, µt) · σT (t, x, µt) · µt)

]
= 0

µ0 = L (X0) = L (ξ)

(99)

Remark. This is a typical two-point boundary problem, hard to solve. Moreover, Cauchy-Lipschitz like theory can

only ensure the existence and uniqueness of the solution locally (typically in a small time interval near 0) but not

globally. This phenomenon can directly be seen in the closed-form solution of the finite player LQ game on graph

that I have derived.
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Idea of MKV-FBSDE Approach

The idea of solving MFG is that whenN → ∞, we expect to see all players’ state processes become asymptotically

independent (propagation of chaos). As a result, when we consider the stochastic control problem the representative

player is facing

inf
α

E

[∫ T

0

f(t,Xt, µt, αt) dt+ g(XT , µT )

]
(100)

with dynamics

dXt = b(t,Xt, µt, αt) dt+ σ(t,Xt, µt, αt) dWt (101)

where the empirical measure is replaced with the fixed measure flow µ, we expect to see that µt is actually a

deterministic measure instead of a random measure. Recall that the empirical measure in player i’s dynamics is

defined as

µN−1

X−i
t

=
1

N − 1

N∑
j=1,j ̸=i

δXj
t

(102)

which puts probability mass 1
N−1 on the realization of Xj

t for ∀j ̸= i. However, Xj
t contains randomness so µN−1

X−i
t

is a random measure. On the other hand, if the propagation of chaos brings with asymptotic independence of

different players’ state process, for a regular enough ϕ, E
∣∣∣ϕ(µN−1

X−i
t

)− ϕ(µt)
∣∣∣2 → 0 (N → ∞) where µt = L

(
X1

t

)
is

a deterministic measure, i.e. the randomness in the measure is gone asymptotically. Therefore, it makes sense to

replace µt in the dynamics of the representative player with L (Xt) to get an SDE of McKean-Vlasov (MKV)

type

dXt = b(t,Xt,L (Xt) , αt) dt+ σ(t,Xt,L (Xt) , αt) dWt (103)

that’s the essential nature of state dynamics in MFG.

Remark. When common noise is present, the situation becomes more complicated and it’s natural to expect that

µN−1

X−i
t

can no longer be replaced with a deterministic measure µt. Although µt would be a random measure in this

case, it would be the conditional marginal distribution of Xt given the realization of the common noise so the state

dynamics can still be turned essentially into an SDE of conditional MKV type. However, MFG with common noise

is harder to solve since the randomness in µt causes measurability problems in using the filtration generated by the

BM, causing the failure of stochastic integrals being MG. That’s why MFG with common noise requires a different

setting in a random environment.

Talking about using FBSDE to solve control problems, there are typically two approaches. We still assume an

uncontrolled diffusion coefficient σ. One of the approach is to set up the value function and the HJBE it has to

satisfy, then apply generalized Feynman-Kac formula to view it as the solution of a BSDE (recall that any solution
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to a semi-linear PDE has probabilistic representation under BSDE). In more details, the BSDE is given by

dYt = −f(t,Xt, µt, α̂(t,Xt, µt, [σ
T (t,Xt, µt)]

−1Zt)) dt+ Zt · dWt (104)

with terminal condition YT = g(XT , µT ). Here α̂ is still formed as the minimizer of the reduced Hamiltonian w.r.t.

α and X is the state process generated by taking control α̂.

Remark. The HJBE of the value function is exactly

∂tV +
1

2
Tr(σ(t, x, µt)σ

T (t, x, µt)∂xxV ) +H(t, x, µt, ∂xV, α̂(t, x, µt, ∂xV )) = 0 (105)

as shown above. It’s clear that the correspondence of semi-linear PDE and BSDE through generalized Feynman-Kac

formula is formed as (recall the value function and Delta-hedging strategy interpretation of BSDE)Yt = V (t,Xt)

Zt = σT (t,Xt, µt) ∂xV (t,Xt)
(106)

computation under Ito formula tells us (where dots mean inner product)

dYt = dV (t,Xt) = ∂tV (t,Xt) dt+ ∂xV (t,Xt) · dXt +
1

2
Tr(∂xxV σσT ) dt (107)

= ∂tV dt+ (∂xV · b) dt+ (σT ∂xV ) · dWt +
1

2
Tr(∂xxV σσT ) dt (108)

with variables in function V, b, σ omitted. It’s immediate that the coefficient of dWt which is σT ∂xV corresponds to

Zt and the coefficient of dt is

∂tV + b · ∂xV +
1

2
Tr(∂xxV σσT ) = b · ∂xV −H = −f (109)

according to the HJBE. This results in the BSDE stated above

dYt = −f(t,Xt, µt, α̂(t,Xt, µt, [σ
T (t,Xt, µt)]

−1Zt)) dt+ Zt · dWt (110)

with ∂xV (t,Xt) = [σT (t,Xt, µt)]
−1Zt.

Generally speaking, when the dimension of BM and the dimension of state is the same, σ takes value as a square

matrix and we would typically require σ to be invertible since then solving the FBSDE gives the solution Ẑt and

∂xV (t, x) can then be recovered from Ẑt, providing the NE α̂t. More generally, when the dimension of BM is higher

than the dimension of the state, e.g. σ takes value as N × (N + 1) matrix, this approach can be applied when σσT

is invertible, otherwise we call the problem to be degenerated and we avoid discussing it here.

The second approach is not based on the value function, but the Pontryagin’s maximum principle we are familiar
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with. The adjoint BSDE is naturally provided as

dYt = −∂xH
full(t,Xt, µt, Yt, Zt, α̂(t,Xt, µt, Yt)) dt+ Zt dWt (111)

with terminal condition YT = ∂xg(XT , µT ). Here α̂ is still formed as the minimizer of the reduced Hamiltonian w.r.t.

α but in the adjoint BSDE we have to use the full Hamiltonian

Hfull(t, x, µ, y, z) = H(t, x, µ, y, α) + σ(t, x, µ) · z (112)

instead of the reduced Hamiltonian H since σ is not necessarily free of the state x.

Remark. Just to clarify the difference between full Hamiltonian and reduced Hamiltonian, when the diffusion coeffi-

cient is free of control, we can minimize the reduced Hamiltonian but still need the full Hamiltonian to construct the

adjoint BSDE (which many books forget to tell and is somewhat misleading). The only case one can always stick to

the reduced Hamiltonian is when σ = σ(t) has no dependence on x (or constant σ which often appears in literature).

In short, we can actually always use the full Hamiltonian instead of the reduced one.

This second approach does not require σ to be always invertible but requires differentiability of the coefficients.

Remark. In short, when it comes to FBSDE approach in control problems, there are mainly two ways.

The first approach is to build up the value function, derive the HJBE and use the correspondence

between semi-linear PDE and BSDE (generalized Feynman-Kac formula, form value function as the solution to

BSDE) to get FBSDE. However, this approach requires σ to be uncontrolled and invertible at all times. One

can recall that the first approach is what we do in the Deep BSDE algorithm to numerically solve stochastic control

problems.

The second approach is to apply Pontryagin’s maximum principle and derive FBSDE. This approach puts

no restrictions on σ but requires the differentiability of coefficients.

Both approach ends up in the same form of FBSDE given uncontrolled diffusion coefficient
dXt = B(t,Xt, µt, Yt, Zt) dt+Σ(t,Xt, µt) dWt

dYt = −F (t,Xt, µt, Yt, Zt) dt+ Zt dWt

YT = G(XT , µT )

(113)

but a different correspondence of B,Σ, F,G with the original dynamics. To be specific, for the generalized Feynman-

Kac formula approach, 

B(t, x, µ, y, z) = b(t, x, µ, α̂(t, x, µ, [σT (t, x, µ)]−1z))

Σ(t, x, µ) = σ(t, x, µ)

F (t, x, µ, y, z) = f(t, x, µ, α̂(t, x, µ, [σT (t, x, µ)]−1z))

G(x, µ) = g(x, µ)

(114)
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and for the Pontryagin’s maximum principle approach,

B(t, x, µ, y, z) = b(t, x, µ, α̂(t, x, µ, y))

Σ(t, x, µ) = σ(t, x, µ)

F (t, x, µ, y, z) = ∂xH
full(t, x, µ, y, z, α̂(t, x, µ, y))

G(x, µ) = ∂xg(x, µ)

(115)

where α̂(t, x, µ, y) is always the minimizer of Hamiltonian w.r.t. α. Combined with the idea of MFG discussed above

replacing µt with L (Xt), solving MFG turns into the problem of solving FBSDE of McKean-Vlasov

(MKV-FBSDE) type 
dXt = B(t,Xt,L (Xt) , Yt, Zt) dt+Σ(t,Xt,L (Xt)) dWt

dYt = −F (t,Xt,L (Xt) , Yt, Zt) dt+ Zt dWt

YT = G(XT ,L (XT ))

(116)

so it’s natural to investigate the solvability of MKV-FBSDE.
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Solvability of MKV-FBSDE

Here we present some general ideas to investigate the solvability of MKV-FBSDE. We start from an example of

coupled forward backward differential equations 

ẋt = −yt

ẏt = 0

x0 ∈ [−2, 2]

yT = G(xT )

(117)

where x, y are deterministic functions in t and the time horizon is [0, T ], T = 1. Consider G taken as G(x) =

(−1)∨x∧1, since y is free of t, when x1 > 1, ∀t ∈ [0, 1], yt = y1 = 1 resulting in ẋt = −1, xt = −t+x0 so it must be true

that x1 = −1+x0 > 1, x0 > 2, a contradiction. Similarly, x1 < −1 cannot be true so ∀t ∈ [0, 1], yt = y1 = G(x1) = x1

with x1 ∈ [−1, 1]. Now ẋt = −x1, xt = −x1t + x0 has to satisfy x1 = −x1 + x0, x0 = 2x1, x1 ∈ [−1, 1] is consistent.

So the solution exists and is unique, given by xt = −x0

2 t+ x0

yt =
x0

2

(118)

on the other hand, consider G taken as G(x) = −(−1) ∨ x ∧ 1, when x0 ̸= 0, we get the following unique solution

from a similar argument xt = x0 + t · sgn(x0)

yt = −sgn(x0)
(119)

however, when x0 = 0, there are infinitely many solutions

∀a ∈ [−1, 1],

xt = at

yt = −a
(120)

so the uniqueness of the solution is destroyed despite a small sign change in G. In this example, the monotonicity

of G plays a key role in the property of FBSDE. An analogue to the adjoint BSDE derived in Pontryagin’s maximum

principle tells us that we can compare the terminal condition yT = ∂xg(XT ) with yT = G(xT ) so G can somewhat

be understood as ∂xg. Recall that the verification step of Pontryagin’s maximum principle requires the convexity

of g, i.e. ∂xg to be increasing, analogue to G being increasing. From the example above, when G is increasing, the

existence and uniqueness holds, so it’s somewhat consistent with the fact we already know that the convexity in g

(or the monotonicity in the terminal condition) plays a crucial role in the existence and uniqueness

argument of FBSDE.

Remark. The example above has an interesting interpretation under Burgers’ equation. Setting yt = u(t, xt) as the
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form of value function, FBSDE can be transformed into a nonlinear PDE

∂tu− u · ∂xu = 0 (121)

with terminal condition u(T, x) = G(x).

Do a time reversal v(t, x) = u(T − t, x) to see that

∂tv + v · ∂xv = 0 (122)

with initial condition v(0, x) = G(x). This is called the inviscid Burgers’ equation describing the motion of

fluid along a tunnel under the conservation law (velocity of the fluid is proportional to v under the interpretation of

Burgers’ equation that u(t, x) can be understood as the probability density of the fluid at spatial coordinate x at time

t)

When G in increasing in x, the fluid is in the dilation regime (at place farther away from the starting point,

there’s more fluid), so as the motion starts, there will be no shock as time goes by, everything is well-posed. However,

when G is decreasing in x, the fluid is in the compression regime (at place farther away from the starting point,

there’s less fluid), as time goes by the fluid at the starting point has a higher velocity, it catches from behind, creating

a shock (singularity), that’s why the uniqueness of the solution to FBSDE is destroyed.

This correspondence between FBSDE with deterministic coefficients and and the system of char-

acteristics of nonlinear PDE is very interesting since I always believe it’s hard to find some correspondence in

reality for FBSDE. It’s also an important correspondence since it directly motivates the existence and uniqueness

argument of FBSDE from an intuitive perspective. Of course, the reader has to do some calculations in Burgers’

equation to believe in what I have stated above. I am definitely willing to write something on Burgers’ equation in

another note if time allows.

Yet, the convexity of g or increasing property of ∂xg meets some trouble extending to the MFG setting because

g = g(x, µ) is a function of state and the measure. This requires us to define monotonicity for a function that maps

a measure to a real number which will be discussed in a later context.

On the other hand, the correspondence between FBSDE with deterministic coefficients and and the system of

characteristics of nonlinear PDE mentioned above provides motivation for the decoupling field of FBSDE. Still

take the example listed above with the correspondence to Burgers’ equation, adding diffusion term 1
2∂xxu on LHS

gives

∂tu− u · ∂xu+
1

2
∂xxu = 0 (123)

results in the viscous Burgers’ equation (diffusive). This PDE has no singularity in its solution because of the
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regularizing effect of the heat kernel. A same correspondence back to FBSDE tells us that this PDE corresponds to

dXt = −Yt dt+ dWt

dYt = Zt dWt

x0 ∈ R

YT = G(XT )

(124)

with the BM naturally appearing (recall that BM has infinitesimal generator as the Laplacian) and randomness is in-

troduced. Well-posedness of the viscous Burgers’ equation corresponds to the existence and uniqueness

of the solution to this FBSDE, moreover the solution admits the representation

P (∀t ∈ [0, 1], Yt = u(t,Xt)) = 1, Zt = ∂xu(t,Xt) λ× P− a.e. (125)

that Y has the structure as a value function in terms of underlying state process X and Z is the differential of value

function (typical interpretation of BSDE). In this case, u is called the decoupling field of this FBSDE since solving

u solves the FBSDE.

Remark. To check the correspondence, set Yt = u(t,Xt), Zt = ∂xu(t,Xt) and apply Ito formula

dYt = du(t,Xt) = ∂tu dt+ ∂xu dXt +
1

2
∂xxu d⟨X,X⟩t (126)

= ∂tu dt− ∂xu · Yt dt+ ∂xu dWt +
1

2
∂xxu dt (127)

=

(
∂tu− u · ∂xu+

1

2
∂xxu

)
(t,Xt) dt+ Zt dWt (128)

the comparison principle of BSDE against dYt = Zt dWt tells us

∂tu− u · ∂xu+
1

2
∂xxu = 0 (129)

resulting in the correspondence.

Finding decoupling field thus provides another approach to solving FBSDE by turning it into solving PDE and

the existence and uniqueness of solution to FBSDE is transformed to that of PDE which can be investigated in the

traditional framework. However, this method only works for a certain kind of FBSDE, not generally applicable.

Toward the existence of solution to MKV-FBSDE, Schauder’s fixed point theorem is an important tool

to use on the Wasserstein space P2(E) that contains probability measures on E. The definition of p-Wasserstein

distance is

Wp(µ, µ
′) = inf

π∈Πp(µ,µ′)

(∫
E×E

[d(x, y)]pπ(dx, dy)

) 1
p

(130)

with d as the distance on E and Πp(µ, µ
′) as the set of all couplings of µ, µ′ (the set of all measures with marginals as
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µ, µ′). P2(E) is just the Wasserstein space equipped with 2-Wasserstein distance. The usage of fixed point theorem

will be stated later but one can expect that we will define a mapping from a measure to another measure in the

Wasserstein space with L (Xt) as the fixed point so that the solution to MKV-FBSDE is formed as the fixed point

of this mapping (similar to what we have done in the meeting time example).
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MKV-FBSDE Approach to MFG

The ideas of two different MKV-FBSDE approach to MFG are presented above, one from HJB under the char-

acterization of generalized Feynman-Kac formula and the other from Pontryagin’s maximum principle. Notice that

different assumptions are placed on the diffusion coefficient σ(t, x, µ, α) for simplicity and consistency

with the book, but the readers are welcome to think about whether those conditions can be relaxed (refer to the

conditions presented in the chapter of the idea of MKV-FBSDE approach). In this case, we organize the results

as theorems below to remind readers of our main results (the description is not completely rigorous, only the most

important conditions as the differences between two approaches are mentioned).

Theorem 3 (Value Function Approach). Assume σ = σ(t, x) is free of empirical measure and control. Let α̂(t, x, µ, y)

be the unique minimizer of the reduced Hamiltonian H(t, x, µ, y, α) and if σ is uniformly elliptic, i.e.

∃L > 0,∀t ∈ [0, T ],∀x, σ(t, x) · σT (t, x) ≥ L−1I (131)

where ≥ is in the sense of semi-positive definite between symmetric matrices, then the continuous flow of measures

µ : [0, T ] → P2(Rd) is MFG equilibrium iff µt = L
(
X̂t

)
where (X̂, Ŷ , Ẑ) solves the MKV-FBSDE



dX̂t = b
(
t, X̂t,L

(
X̂t

)
, α̂
(
t, X̂t,L

(
X̂t

)
, [σT (t, X̂t)]

−1Ẑt

))
dt+ σ

(
t, X̂t

)
dWt

dŶt = −f
(
t, X̂t,L

(
X̂t

)
, α̂
(
t, X̂t,L

(
X̂t

)
, [σT (t, X̂t)]

−1Ẑt

))
dt+ Ẑt · dWt

X̂0 = ξ

ŶT = g
(
X̂T ,L

(
X̂T

)) (132)

Theorem 4 (Pontryagin’s Maximum Principle Approach). Assume σ ∈ R is a constant. Let α̂(t, x, µ, y) be the unique

minimizer of the reduced Hamiltonian H(t, x, µ, y, α), then the continuous flow of measures µ : [0, T ] → P2(Rd) is

MFG equilibrium iff µt = L
(
X̂t

)
where (X̂, Ŷ , Ẑ) solves the MKV-FBSDE



dX̂t = b
(
t, X̂t,L

(
X̂t

)
, α̂
(
t, X̂t,L

(
X̂t

)
, Ŷt

))
dt+ σ dWt

dŶt = −∂xH
(
t, X̂t,L

(
X̂t

)
, Ŷt, α̂

(
t, X̂t,L

(
X̂t

)
, Ŷt

))
dt+ Ẑt · dWt

X̂0 = ξ

ŶT = ∂xg
(
X̂T ,L

(
X̂T

)) (133)

where f, g ∈ C1 and g is convex.
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Lasry-Lions Monotonicity Condition

When it comes to the uniqueness of the solution to MKV-FBSDE, there are mainly three approaches: Cauchy-

Lipschitz theory on a small enough time horizon (locally near time 0), adding monotonicity conditions, and using

decoupling field. Here we consider the second approach, naturally requiring us to define the monotonicity when it

comes to a function mapping a measure to a real number.

Define for h : Rd × P2(Rd) → R to be (Lasry-Lions) monotone if ∀µ ∈ P2(Rd), h(x, µ) is at most of

quadratic growth in x and

∀µ, µ′ ∈ P2(Rd),

∫
Rd

[h(x, µ)− h(x, µ′)] (µ− µ′)(dx) ≥ 0 (134)

which is directly motivated from the uniqueness of the solution to the mean field approximation of single-period

game. Uniqueness of the MFG equilibrium is typically proved under the Lasry-Lions monotonicity assumptions

b = b(t, x, α), σ = σ(t, x, α) free of empirical measure

f = f0(t, x, µ) + f1(t, x, α) separated structure of dependence on µ, α

Quadratic growth condition on f, g

f0(t, ·, ·), g both Lasry-Lions monotone

(135)

with the theorem provided below as the result.

Theorem 5 (Uniqueness of MFG Equilibrium). Assume the above Lasry-Lions monotonicity assumptions hold and

µ is a deterministic continuous measure flow of measure, then for each fixed empirical measure µ, the optimality step

in MFG (optimize the control) has unique minimizer α̂µ inducing state process X̂µ. There exists at most one flow

of measure µ such that ∀t ∈ [0, T ],L
(
X̂µ

t

)
= µt so there is at most one MFG equilibrium.

The proof of this theorem is intuitive and does not need any extra explanation, the reader shall check the book

for the proof on his/her own.

Remark. The Lasry-Lions assumptions are strong assumptions since the state dynamics are required to not contain

the empirical measure, which is often not the case in practice. As a result, uniqueness of MFG equilibrium typically

fails and in most cases we don’t care too much about the uniqueness argument.

Remark. It’s important to see some examples of h : Rd × P2(Rd) → R that are Lasry-Lions monotone. Trivially,

if h = C|x|2 does not depend on µ or h does not depend on x, it must be Lasry-Lions monotone.

In the setting of LQ-MFG, we may meet with h(x, µ) = a
∫
Rd y µ(dy) · x (a > 0). In the setting of potential

games, we may see h(x, µ) =
∫
Rd l(x − y)µ(dy) for odd function l such that |l(x)| ≤ C(1 + |x|2). Bearing the exact

same form of h, we can consider l : Rd → R+ such that l(r) =
∫
Rd e

ir·sλ(ds) where λ is a symmetric positive finite

measure on Rd (e.g. the measure induced by Gaussian or Cauchy r.v.). With such interpretation, l is actually the

characteristic function (Fourier transform) of the distribution λ, with λ to be symmetric in order to ensure that the
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Fourier transform only takes real values. Actually,

h(x, µ) =

∫
Rd

l(x− y)µ(dy) (136)

is an important example for a class of Lasry-Lions monotone functions (plugging in l(x) = sgn(x), d = 1

gives h(x, y) = µ((−∞, x))− µ((x,+∞)) which is another example, proving that h(x, µ) = µ((−∞, x)) + 1
2µ({x}) is

also Lasry-Lions monotone). Those examples can be verified through simple calculations.

Actually, the uniqueness of MFG equilibrium has another sufficient condition coming from the notion of L-

monotonicity. It turns out that L-monotonicity sometimes can deal with cases where Lasry-Lions monotonicity

fails. However, since we are not much concerned about the uniqueness of MFG equilibrium, we skip it for now and

may come back to it later.
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General Approach to Solve LQ-MFG

Let’s consider the linear quadratic MFG as the simplest example where

b(t, x, µ, α) = b1(t)x+ b1(t)µ+ b2(t)α (137)

where state variable x, control variable α take value in Rd, BM is of dimension d and diffusion coefficient σ ∈ Rd×d

is a constant matrix. Here µ =
∫
Rd xµ(dx) denotes the expectation of the probability measure µ (a measure on Rd)

and b1, b1, b2 are deterministic continuous matrix-valued functions. The running cost is

f(t, x, µ, α) =
1

2

(
xT q(t)x+ (x− s(t)µ)T q(t)(x− s(t)µ) + αT r(t)α

)
(138)

where q, q, r are continuous functions and take value as symmetric PD matrix. The terminal cost is

g(x, µ) =
1

2

(
xT qx+ (x− sµ)T q(x− sµ)

)
(139)

where q, q here are symmetric PD matrices with no dependence on time.

To solve this MFG, notice that the cost functions are convex, a natural correspondence with Pontryagin’s

maximum principle to derive MKV-FBSDE. Since σ has no dependence on x and α, reduced Hamiltonian can be

used throughout the context

H(t, x, µ, y, α) = [b1(t)x+ b1(t)µ+ b2(t)α] · y +
1

2

(
xT q(t)x+ (x− s(t)µ)T q(t)(x− s(t)µ) + αT r(t)α

)
(140)

take a derivative w.r.t. α

∂αH = [b2(t)]
T y + r(t)α (141)

set as zero to get the optimal control

α̂(t, x, µ, y) = −[r(t)]−1[b2(t)]
T y (142)

now calculate the coefficients in the adjoint BSDE

∂xH = [b1(t)]
T y + q(t)x+ q(t)(x− s(t)µ) (143)

∂xg = qx+ q(x− sµ) (144)

to write down the MKV-FBSDE under the interpretation that when the number of players is large enough, we can

replace the flow of empirical measure (random measure) with the flow of deterministic measure µt = L (Xt) and
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replace the control α with α̂(t,Xt, µt, Yt) simultaneously

dXt =
[
b1(t)Xt + b1(t)L (Xt)− b2(t)[r(t)]

−1[b2(t)]
TYt

]
dt+ σ dWt

X0 = ξ

dYt = −
(
[b1(t)]

TYt + q(t)Xt + q(t)(Xt − s(t)L (Xt))
)
dt+ Zt dWt

YT = qXT + q(XT − sL (XT ))

(145)

now we want to investigate the solvability of this MKV-FBSDE containing both optimality and consistency conditions.

Since the measure acts on the coefficients only through its mean, we denote

xt = EXt = L (Xt) (146)

and simplify the MKV-FBSDE

dXt =
[
b1(t)Xt + b1(t)xt − b2(t)[r(t)]

−1[b2(t)]
TYt

]
dt+ σ dWt

X0 = ξ

dYt = −
(
[b1(t)]

TYt + [q(t) + q(t)]Xt − q(t)s(t)xt

)
dt+ Zt dWt

YT = (q + q)XT − qsxT

(147)

it’s still hard to see the solvability but the presence of the mean of Xt in the equations leads us to think about taking

expectation on both sides of the MKV-FBSDE to get the coupled ODE w.r.t. the mean of Xt and Yt

dxt =
[
[b1(t) + b1(t)]xt − b2(t)[r(t)]

−1[b2(t)]
T yt
]
dt

x0 = Eξ

dyt = −
(
[b1(t)]

T yt + [q(t) + q(t)− q(t)s(t)]xt

)
dt

YT = (q + q − qs)xT

(148)

where

yt = EYt (149)

interestingly, the following theorem turns the analysis on MKV-FBSDE completely into the analysis on this coupled

ODE w.r.t. the mean of the process.

Theorem 6 (Existence and Uniqueness of the Solution to LQ-MFG). Existence and uniqueness of the solution to
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LQ-MFG holds iff existence and uniqueness of the solution to the ODE system

dxt =
[
[b1(t) + b1(t)]xt − b2(t)[r(t)]

−1[b2(t)]
T yt
]
dt

x0 = Eξ

dyt = −
(
[b1(t)]

T yt + [q(t) + q(t)− q(t)s(t)]xt

)
dt

YT = (q + q − qs)xT

(150)

holds.

At this point, we can put up ansatz

yt = ηtxt + χt (151)

where η, χ are deterministic functions in t, plug into the coupled ODE system, collect coefficients to see the decoupled

version as an ODE w.r.t. η, χ

η̇t = ηtb2(t)[r(t)]
−1[b2(t)]

T ηt − ηt[b1(t) + b1(t)]− [b1(t)]
T ηt − [q(t) + q(t)− q(t)s(t)]

χ̇t = ηtb2(t)[r(t)]
−1[b2(t)]

Tχt − [b1(t)]
Tχt

ηT = (q + q − qs)I

χT = 0

(152)

where ηt is matrix-valued and χt is vector-valued. It’s clear that the existence and uniqueness of the solution

completely depends on the equation for ηt (since plugging in the solution of ηt into the second equation always

gives the trivial solution χt ≡ 0), which is a matrix-valued Ricatti equation. In other words, the solvability of

LQ-MFG can eventually be turned into the solvability of a Ricatti equation (not trivial in general).

If we want to solve the MFG equilibrium, after solving this ODE to get xt, yt, we can try to plug in and solve

the FBSDE (not a McKean-Vlasov type any more) with the affine ansatz for LQ game

Yt = ηtXt + χt (153)

similarly, calculate dYt and collect coefficients, we get an ODE w.r.t. ηt, χt with given terminal conditions, which is

once more a Ricatti equation to solve. Solving out ηt, χt to get the solution (X̂, Ŷ , Ẑ) to the original MKV-FBSDE

provides the MFG equilibrium.

Remark. One has to realize that the ODE for ηt, χt is different from the ODE for ηt, χt. The previous one is a

characterization of the evolution of the mean xt, yt while the latter is a characterization of the solution to the FBSDE.

To conclude, in LQ-MFG, the strategy after writing MKV-FBSDE is to first take expectation to get the evolution

of the mean (possibly solving it) and to prove/disprove the existence and uniqueness of the MFG equilibrium (the

point of setting up ηt, χt). After that, MKV-FBSDE can be simplified into normal FBSDE which can be solved by

putting up an ansatz (the point of setting up ηt, χt).
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Example: Linear Quadratic (LQ) Flocking Model

In this model, there are N players (birds), with player i having position Xi
t at time t taking value in R3. Player

i can determine its control αi
t as the velocity at time t and the state dynamics is given as

dXi
t = αi

t dt+ σ dW i
t (154)

on time horizon [0, T ]. Player i has cost functional

J i(α) = E
∫ T

0

f i(t,Xt, αt) dt (155)

with no terminal cost and the running cost is

f i(t, x, α) =
κ2

2
|xi − x|2 + 1

2
|αi|2 (156)

with | · | denoting the vector ℓ2 norm since xi, αi take values in R3. This is a LQ game with mean field interaction

through |xi − x|2.
Instead of solving it as a finite player game, let’s do mean field approximation and solve it as an LQ-

MFG. It can be easily seen that when N → ∞ this game can be approximated as the game for a single representative

player with state dynamics

dXt = αt dt+ σ dWt (157)

and cost functional

J(α) = E
∫ T

0

f(t,Xt, µt, αt) dt (158)

with no terminal cost and the running cost is

f(t, x, µ, α) =
κ2

2
|x− µ|2 + 1

2
|α|2 (159)

since σ is constant, use reduced Hamiltonian

H(t, x, µ, y, α) = α · y + κ2

2
|x− µ|2 + 1

2
|α|2 (160)

differentiate w.r.t. α

∂αH = y + α (161)
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set it as zero to get the optimal control

α̂(t, x, µ, y) = −y (162)

now calculate the coefficients in the adjoint BSDE

∂xH = κ2(x− µ) (163)

∂xg = 0 (164)

write out the FBSDE for fixed flow of measure {µt} that

dXt = −Yt dt+ σ dWt

X0 = ξ

dYt = −κ2(Xt − µt) dt+ Zt dWt

YT = 0

(165)

replace µt with L (Xt) to get the MKV-FBSDE that characterizes the solution to MFG

dXt = −Yt dt+ σ dWt

X0 = ξ

dYt = −κ2(Xt − L (Xt)) dt+ Zt dWt

YT = 0

(166)

take expectation on both sides to turn it into a coupled ODE w.r.t. the mean of Xt, Yt that

dxt = −yt dt

x0 = Eξ

dyt = 0

yT = 0

(167)

due to the simplicity of this ODE, we don’t even have to set up ηt, χt for decoupling purpose, a direct solution isxt = Eξ ∈ R3

yt = 0
(168)

and is unique, proves the existence and uniqueness of the MFG equilibrium.

When it comes to solving out the closed-form solution of the MFG equilibrium, put up affine ansatz with
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deterministic η, χ

Yt = ηtXt + χt (169)

the MKV-FBSDE is now a normal FBSDE

dXt = −Yt dt+ σ dWt

X0 = ξ

dYt = −κ2(Xt − Eξ) dt+ Zt dWt

YT = 0

(170)

collect coefficients and turn it into an ODE w.r.t. ηt, χt (check that Zt = σηt is deterministic, so it’s adapted, the

key condition to satisfy as the solution to BSDE)
η̇t − η2t + κ2I3 = 0

χ̇t − ηtχt − κ2Eξ = 0

ηT = 0, χT = 0

(171)

it’s quite obvious that the solution is

ηt = κ
e2κ(T−t) − 1

e2κ(T−t) + 1
I3

def
= η∗t I3 (172)

where η∗t takes value as real number, and to solve χt, we need to tear apart different components

∀i ∈ {1, 2, ..., d} , χi
t = −κ2(Eξ)i

∫ T

t

e
∫ t
s
η∗
u du ds (173)

where (Eξ)i is the i-th component of Eξ. This gives the solution to the original MKV-FBSDE and the state dynamics

at equilibrium is

dXt = −(ηtXt + χt) dt+ σ dWt = −ηt(Xt − Eξ) dt+ σ dWt (174)

a mean-reverting Gaussian dynamics.

Remark. Notice that EXt = Eξ,EYt = 0, this tells us that ηtEξ + χt = 0 always holds. In other words,

χt = −ηtEξ = −κ
e2κ(T−t) − 1

e2κ(T−t) + 1
Eξ (175)

an easier representation to use. One can check that indeed this is true by plugging this expression into the ODE for

χt.
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Example: Systemic Risk Without Common Noise

The systemic risk example with common risk has already been solved as an example of finite player game.

However, as we have mentioned above, different from finite player game setting, common noise in MFG causes

essential difficulties (the randomness in the measure is not gone asymptotically) so at this point we only consider

solving this example as a MFG without common noise.

For the purpose of completeness, the setting is copied here. There are N players, with player i having state Xi
t

at time t taking value in R. Player i can determine its control αi
t at time t and the state dynamics is given as

dXi
t = [a(Xt −Xi

t) + αi
t] dt+ σ dW i

t (176)

on time horizon [0, T ]. Player i has cost functional

J i(α) = E

[∫ T

0

f i(t,Xt, αt) dt+ gi(T,XT )

]
(177)

with running cost

f i(t, x, α) =
ε

2
|x− xi|2 − qαi(x− xi) +

1

2
|αi|2 (178)

and terminal cost

gi(t, x) =
c

2
(x− xi)2 (179)

it’s a LQ game with mean field interaction through |xi − x|2 and the parameters ε, q, c are positive with q2 ≤ ε such

that f i is a convex function in (x, αi), resulting in the joint convexity of the reduced Hamiltonian.

First let’s do mean field approximation to turn it into a control problem for the representative player. It’s clear

that the representative player is having state dynamics

dXt = [a(µt −Xt) + αt] dt+ σ dWt (180)

with cost functional

J(α) = E

[∫ T

0

f(t,Xt, µt, αt) dt+ g(T,XT , µT )

]
(181)

running cost

f(t, x, µ, α) =
ε

2
|µ− x|2 − qα(µ− x) +

1

2
|α|2 (182)
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and terminal cost

g(t, x, µ) =
c

2
(µ− x)2 (183)

where µ is the mean of the probability distribution µ.

Let’s apply Pontryagin’s maximum principle. Write down the reduced Hamiltonian (since σ is a constant)

H(t, x, µ, y, α) = [a(µ− x) + α]y +
ε

2
|µ− x|2 − qα(µ− x) +

1

2
|α|2 (184)

minimize w.r.t. α to get

α̂(t, x, µ, y) = −y + q(µ− x) (185)

derive the derivatives in the adjoint BSDE

∂xH = −ay + ε(x− µ) + qα (186)

∂xg = c(x− µ) (187)

write down the FBSDE with α̂ plugged in for fixed flow of measure {µt}

dXt = [(a+ q)(µt −Xt)− Yt] dt+ σ dWt

X0 = ξ

dYt = [(a+ q)Yt − (ε− q2)(Xt − µt)] dt+ Zt dWt

YT = c(XT − µT )

(188)

the consistency condition tells us to replace µt with L (Xt) to get the MKV-FBSDE

dXt = [(a+ q)(L (Xt)−Xt)− Yt] dt+ σ dWt

X0 = ξ

dYt = [(a+ q)Yt − (ε− q2)(Xt − L (Xt))] dt+ Zt dWt

YT = c(XT − L (XT ))

(189)

solving this MKV-FBSDE provides the MFG equilibrium as the solution.

Alike what we have done in the last example, we take expectation on both sides of the FBSDE denoting
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xt = EXt, yt = EYt to get a coupled ODE system

dxt = −yt dt

x0 = Eξ

dyt = (a+ q)yt dt

yT = 0

(190)

it can be directly solved to get the unique solution xt = Eξ

yt = 0
(191)

which implies the existence and uniqueness of MFG equilibrium.

At this point, let’s plug xt = Eξ back into the MKV-FBSDE to reduce it to a normal FBSDE

dXt = [(a+ q)(Eξ −Xt)− Yt] dt+ σ dWt

X0 = ξ

dYt = [(a+ q)Yt − (ε− q2)(Xt − Eξ)] dt+ Zt dWt

YT = c(XT − Eξ)

(192)

with an affine ansatz raised as

Yt = ηt(Xt − Eξ) (193)

this results in the following fact that

dYt = [η̇t − (a+ q)ηt − η2t ](Xt − Eξ) dt+ σηt dWt (194)

compare the stochastic integral term to see Zt = σηt is adapted since ηt is deterministic. Compare the drift term to

get the Ricatti equation with terminal conditionη̇t = η2t + 2(a+ q)ηt − (ε− q2)

ηT = c
(195)

this equation can be solved easily so

α̂t = −(ηt + q)(Xt − Eξ) (196)
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the MFG equilibrium state dynamics is given by

dXt = −(a+ ηt + q)(Xt − Eξ) dt+ σ dWt (197)

Remark. Notice that if this model is solved as a finite player game with the ansatz

Y i,j
t = ηt(Xt −Xi

t)

(
1

N
− δi,j

)
(198)

in the open-loop case we have Ricatti equation

η̇t =

(
1− 1

N

)
η2t +

[
2(a+ q)− q

N

]
ηt − (ε− q2) (199)

while in the Markovian case we have the Ricatti equation

η̇t =

(
1− 1

N2

)
η2t + 2(a+ q)ηt − (ε− q2) (200)

as N → ∞, by propagation of chaos, Xt is close to Eξ so Y i,i
t ≈ Yt (ansatz in finite player game and MFG become

close). On the other hand, in the Ricatti equations of finite payer game, the coefficient converges so we see the

Ricatti equation for MFG as the limit. This observation tells us that MFG equilibrium, under some conditions, can

be formed as the limit of the NE of finite player game as N → ∞ and the difference between open-loop and

Markovian case disappears. This is the consequence of folk theorem and we will come back to this later.

One might wonder if we can solve this MFG with the generalized Feynman-Kac formula. The answer is yes and

not surprisingly we shall get the same MFG equilibrium. Recall that after solving out α̂(t, x, µ, y), since σ is constant

(uncontrolled) and is a given positive real number, generalized Feynman-Kac formula characterizes the solution to

the HJB equation as the solution to a BSDE. With the correspondence Yt = V (t,Xt), Zt = σ · ∂xV (t,Xt) in mind,

we write out the FBSDE for fixed flow of measure µ that

dXt = b
(
t,Xt, µt, α̂

(
t,Xt, µt,

1
σZt

))
dt+ σ dWt

dYt = −f
(
t,Xt, µt, α̂

(
t,Xt, µt,

1
σZt

))
dt+ Zt · dWt

X0 = ξ

YT = g (XT , µT )

(201)
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plug in the coefficients to get 

dXt =
[
(a+ q)(µt −Xt)− 1

σZt

]
dt+ σ dWt

dYt = −
[
ε−q2

2 (µt −Xt)
2 +

Z2
t

2σ2

]
dt+ Zt · dWt

X0 = ξ

YT = c
2 (µT −XT )

2

(202)

replace µt with L (Xt) to get the MKV-FBSDE

dXt =
[
(a+ q)(L (Xt)−Xt)− 1

σZt

]
dt+ σ dWt

dYt = −
[
ε−q2

2 (L (Xt)−Xt)
2 +

Z2
t

2σ2

]
dt+ Zt · dWt

X0 = ξ

YT = c
2 (L (XT )−XT )

2

(203)

unfortunately, taking expectation on both sides does not work now since the BSDE contain the quadratic term in

L (Xt)−Xt and Zt so it’s not easy to directly solve out L (Xt) and turn the equations to a normal FBSDE. Despite

the difficulty solving this MKV-FBSDE, we can verify that
Yt =

1
2µt(Xt − Eξ)2

Zt = σηt(Xt − Eξ)

L (Xt) = Eξ

(204)

is the solution to this MKV-FBSDE where ηt, µt are deterministic functions in t (so that Zt is adapted). To check,

plug in L (Xt) = Eξ to turn it into a normal FBSDE. Plug in the ansatz for Yt, Zt to see that

dYt = (Xt − Eξ)2
[
1

2
µ̇t − (a+ q)µt − µtηt

]
dt+ σµt(Xt − Eξ) dWt (205)

compare with the BSDE to see 
1
2 µ̇t − (a+ q)µt − µtηt = −η2

t

2 − ε−q2

2

µt = ηt

µT = c

(206)

after some simplification, the ODE for ηt = µt is provided asη̇t = η2t + 2(a+ q)ηt − (ε− q2)

ηT = c
(207)
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which is exactly the same as that derived using Pontryagin maximum principle. At this point,

α̂t = −Zt

σ
+ q(Eξ −Xt) = −(q + ηt)(Xt − Eξ) (208)

and the MFG equilibrium state dynamics is given by

dXt = −(a+ ηt + q)(Xt − Eξ) dt+ σ dWt (209)

exactly the same as that derived from Pontryagin maximum principle. At this point, we can go back and check that

∀t ∈ [0, T ],EXt = Eξ since

Xt = ξ −
∫ t

0

(a+ ηs + q)(Xs − Eξ) ds+ σWt (210)

so EXt − Eξ = −
∫ t

0
(a+ ηs + q)(EXs − Eξ) ds. Denote h(t) = EXt − Eξ, it provides the ODEdh(t) = −(a+ ηt + q)h(t) dt

h(0) = 0
(211)

the solution is trivially h(t) = 0 concludes the verification.

Remark. In this example, Pontryagin maximum principle and generalized Feynman-Kac formula can both be applied

to solve the LQ-MFG, but obviously one approach is much easier than the other due to the linearity of coefficients.

One interesting observation is that the Zt in generalized Feynman-Kac formula is different from the Yt in

the Pontryagin maximum principle only by a constant σ. This is within our expectation since Yt = ∂xV (t,Xt) is

the derivative of the value function in the Pontryagin maximum principle but Zt = σ · ∂xV (t,Xt) in generalized

Feynman-Kac formula. This phenomenon indicates that we have to be careful with the different correspondence and

interpretation in generalized Feynman-Kac formula and Pontryagin maximum principle.

Remark. One important point to state here is the intuition of the systemic risk model. This model tries to explain

the existence of systemic risk that when a certain amount of banks default, all other banks will also choose to default,

causing problems for the economy (for details please refer to the paper Mean Field Game and Systemic Risk). In

other words, this model is interesting in the large deviation sense in that default rarely happens but makes a large

difference to other banks’ behavior.

However, the MFG equilibrium state dynamics tells us

dXt = −(a+ ηt + q)(Xt − Eξ) dt+ σ dWt (212)

which is just a normal OU process w.r.t. Eξ. In this sense, each player’s state shall exhibit mean-reverting behavior

around Eξ and all players’ states are asymptotically independent. In this sense, we completely lose the large deviation

behavior described above.
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Notice that there’s actually no contradiction between those two behaviors. MFG exhibits the SLLN behavior

while the original finite player game model exhibits the large deviation behavior. Imagine that one has i.i.d. random

variables, if SLLN is working, the almost sure limit is a deterministic real number so of course one loses large

deviation arguments. The essential reason is that SLLN provides a too coarse limiting behavior argument. To recover

the large deviation behavior, it’s natural to think about tracing time back a little bit to the time when SLLN has not

yet completely come into effect, i.e. replacing the expectation with the sample mean. As a result, one can actually

recover the large deviation behavior by modifying the MFG equilibrium state dynamics a little bit into

dXt = −(a+ ηt + q)

(
Xt −

1

k

k∑
i=1

Xi
t

)
dt+ σ dWt (213)

replacing Eξ with the sample mean of states among k players for some fixed integer k so that SLLN does not fully

come into effect.
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Example: Aiyagari’s Growth Model

Let’s introduce the diffusion form of Aiyagari’s growth model as a finite player game. There are N players in

the economy, with each player maintaining his state Xi
t = (Zi

t , A
i
t) where Zt denotes the labor productivity at time

t and At denotes the wealth at time t. The labor productivity has dynamics

dZi
t = µZ(Z

i
t) dt+ σZ(Z

i
t) dW

i
t (214)

where µZ , σZ : R → R are given. Each player’s labor productivity is a private state, i.e. there’s no interaction with

other players. On the other hand, players receive wages depend on their productivity, there is an interest rate in the

economy so the player’s wealth enjoys natural growth as time goes by. Each player maintains his control cit as the

consumption rate at time t in order to receive utility. As a result, the dynamics of the wealth process is given by

dAi
t = [wi

tZ
i
t + rtA

i
t − cit] dt (215)

where wi
t, rt are two stochastic processes denoting the wage and the interest rate specified later in the context. Given

the control of all players, the i-th player tries to maximize the expected utility

J i(c) = E
∫ ∞

0

e−ρtU(cit) dt (216)

on infinite time horizon with continuous-time discount rate ρ > 0. The utility function is often taken as the CRRA

utility function

U(c) =
c1−γ − 1

1− γ
(γ > 0) (217)

to determine the construction of wi
t and rt, we need a little bit knowledge from economy that a production function is

typically used to describe the production process. The production function Y = F (K,L) describes how total capital

K and total labor L decides the total output of the production Y . Naturally, the total capital in this economy is

the sum of all players’ wealth, but for the purpose of simplicity (easier correspondence with mean field interaction

later), we do normalization here to view this economy as having only one person so the total capital would be

Kt =
1

N

N∑
i=1

Ai
t (218)

and the total labor would be

Lt = 1 (219)

at this point, it would be natural to determine wi
t and rt. The partial derivative of the total output of production

F w.r.t. total labor L gives the marginal product of labor, which in a competitive equilibrium, shall be equal to the
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wage. By the same reasoning, the marginal product of capital shall be equal to the user cost of capital, which is the

interest rate plus the rate of capital depreciation δ ≥ 0.

Remark. Here we have to be a little bit familiar with the economics setting that under equilibrium all costs and

profits equate. Imagine that we are running a company in the economy, whenever the marginal product of labor is

more than the wage, we shall recruit more people since the value brought by more production exceeds the cost of paying

the worker. For the same reason, whenever the marginal product of capital is more than the user cost of capital, we

shall invest more capital into production since the value brought by more production exceeds the cost of investing in

new equipment or borrowing money. Just to remind, the user cost of capital equals the interest rate (time value) plus

the rate of capital depreciation (e.g. equipment damage in production process).

At this point, it shall be very clear that

rt = ∂KF (Kt, Lt)− δ (220)

wt = ∂LF (Kt, Lt) (221)

where the wage process of all players in the economy is identical. To clarify, all players interact only through Kt which

is actually a function of the empirical measure of the wealth Ai
t. In economics, we often choose the Cobb-Douglass

production function

F (K,L) = AKαL1−α (A > 0, 0 < α < 1) (222)

which results in

rt = AαKα−1
t − δ (223)

wt = A(1− α)Kα
t (224)

this concludes the setting of the diffusion form of Aiyagari’s growth model.

Now let’s make some extra assumptions and try to solve this model as a MFG. The first assumption to make

is that this model now takes place on finite time horizon [0, T ] so the discount rate ρ = 0 is unnecessary. Since it’s

now a finite horizon game, we add the terminal reward term gi(T,Xi
T ) = Ai

T saying that each player also wants to

take into account the wealth he has at terminal time. Other than that, we take µZ(z) = 1− z so the dynamics of Zt

is an OU process and σZ ≡ σ > 0 is specified as a constant, A = 1 is taken WLOG. Let’s repeat all our settings for

now. The state dynamics is given by
dZi

t = (1− Zi
t) dt+ σ dW i

t

dAi
t = [(1− α)Kα

t Z
i
t + (αKα−1

t − δ)Ai
t − cit] dt

EZi
0 = 1

(225)
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and we try to minimize the negative expected utility

J i(c) = −E

[∫ T

0

U(cit) dt+Ai
T

]
(226)

Firstly, let’s conduct mean field approximation to turn this game into a game only for the representative player

that 
dZt = (1− Zt) dt+ σ dWt

dAt = [(1− α)µt
αZt + (αµt

α−1 − δ)At − ct] dt

EZ0 = 1

(227)

and he tries to minimize the negative expected utility

J(c) = −E

[∫ T

0

U(ct) dt+AT

]
(228)

notice that Kt is exactly the mean of the empirical measure of Ai
t so it’s replaced with µt, keep in mind that µt is not

exactly the empirical measure of state (state consists of two parts, wealth and labor productivity, here the empirical

measure is only built w.r.t. wealth).

Apply Pontryagin maximum principle for fixed flow of measure µ, first write the state dynamics in the vector

form [
dZt

dAt

]
=

[
1− Zt

(1− α)µt
αZt + (αµt

α−1 − δ)At − ct

]
dt+

[
σ

0

]
dWt (229)

so the coefficients have the form

b(t, (z, a), µ, c) =

[
1− z

(1− α)µαz + (αµα−1 − δ)a− c

]
(230)

σ(t, (z, a), µ, c) =

[
σ

0

]
(231)

f(t, (z, a), µ, c) = −U(c) (232)

g(t, (z, a), µ) = −a (233)

calculate reduced Hamiltonian (diffusion coefficient is constant), notice that we split y into tuples since the state is

also a tuple

H(t, (z, a), µ, (yz, ya), c) = yz(1− z) + ya[(1− α)µαz + (αµα−1 − δ)a− c]− U(c) (234)
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take derivative w.r.t. c to get the optimal control

ĉ(t, (z, a), µ, (yz, ya)) = (−ya)
− 1

γ (235)

calculate the coefficient of the adjoint BSDE

∂zH = −yz + ya(1− α)µα (236)

∂aH = ya(αµ
α−1 − δ) (237)

∂zg = 0 (238)

∂ag = −1 (239)

we write down the FBSDE 

dZt = (1− Zt) dt+ σ dWt

dAt = [(1− α)µt
αZt + (αµt

α−1 − δ)At − (−Ya,t)
− 1

γ ] dt

EZ0 = 1

dYa,t = −Ya,t(αµt
α−1 − δ) dt+ Za,t dWt

Ya,T = −1

dYz,t = [Yz,t − Ya,t(1− α)µt
α] dt+ Zz,t dWt

Yz,T = 0

(240)

it’s quite obvious that we don’t actually need the last BSDE w.r.t. Yz,t since it’s decoupled from other FBSDE (one

can solve Ya,t from other equations then plug in to know Yz,t). On the other hand, the optimal control ĉ has no

dependence on Yz,t so we don’t actually care about solving this BSDE. This observation reduces the FBSDE into

({Zt} is also a given process, its dynamics is not coupled with other equations in the FBSDE)
dAt = [(1− α)µt

αZt + (αµt
α−1 − δ)At − (−Ya,t)

− 1
γ ] dt

dYa,t = −Ya,t(αµt
α−1 − δ) dt+ Za,t dWt

Ya,T = −1

(241)

replace µt with L (At) to get MKV-FBSDE
dAt = [(1− α)L (At)

α
Zt + (αL (At)

α−1
− δ)At − (−Ya,t)

− 1
γ ] dt

dYa,t = −Ya,t(αL (At)
α−1

− δ) dt+ Za,t dWt

Ya,T = −1

(242)
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and take expectation on both sides to get a coupled ODE with the notation at = EAt, ya,t = EYa,t that
dat = [(1− α)aαt + (αaα−1

t − δ)at − E(−Ya,t)
− 1

γ ] dt

dya,t = −ya,t(αa
α−1
t − δ) dt

ya,T = −1

(243)

here we used the fact that EZt = 1 from the dynamics of Zt together with EZ0 = 1. It’s hard to deal with the

expectation E(−Ya,t)
− 1

γ in the ODE since it cannot be well represented by at, yt so we have to think of using other

properties of this MKV-FBSDE. One observation is that in the BSDE w.r.t. Ya,t, the state process At, Zt does not

directly appear in the coefficients except the interaction through L (At) which is a function in t. As a result, this

MKV-FBSDE is actually decoupled and Ya,t is actually deterministic since by setting Za,t = 0, Ya,t is actually the

solution to dYa,t = −Ya,t(αL (At)
α−1

− δ) dt

Ya,T = −1
(244)

that provides

Ya,t = −e−
∫ T
t

(αL (As)
α−1−δ) ds (245)

as a result, the coupled ODE turns intodat = [aαt − δat − (−Ya,t)
− 1

γ ] dt

Ya,t = −e−
∫ T
t

(αaα−1
s −δ) ds

(246)

where Ya,t = ya,t since it’s deterministic. The existence and uniqueness of the solution to this ODE is equivalent

to the existence and uniqueness of the MFG equilibrium. Here the important point is to ensure that the solution

satisfies ∀t ∈ [0, T ],L (At) > 0, Yt < 0 so some restrictions have to be added on the initial wealth A0. From the

ODE w.r.t. at,

at = e−δt

[
a0 +

∫ t

0

eδsaαs ds−
∫ t

0

eδs(−Ya,s)
1
γ ds

]
(247)

the solution can be expressed in terms of Ya,t. From the expression of Ya,t, it’s easily seen that

−Ya,t ≥ e−δ(T−t) (248)

so

at ≥ e−δt

[
a0 −

∫ t

0

eδse
δ(T−s)

γ ds

]
(249)
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it always happens that ∀t ∈ [0, T ], at > 0 if

EA0 = a0 >

∫ t

0

eδse
δ(T−s)

γ ds (250)

the MFG equilibrium exists and is unique given the initial wealth is not too little.

As the solution to MFG, we can solve out Ya,t and at simultaneously from numerical methods. After that,

ĉt,L (At) are known and we can simulate the trajectory of {Zt} and then simulate the trajectory of {At} to see the

MFG equilibrium state dynamics.
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Game with a Continuum of Players

For the purpose of completeness, we mention the construction of a game with a continuum of players. The

motivation here is that macroeconomics model typically requires each individual to have negligible amount of impact

on the whole economy. On the other hand, the MFG setting is generalized from the finite player game taking the

number of players to infinity. It seems that two ways of construction have no significant difference but one actually

has to face some measurability issues when dealing with the game with a continuum of players.

Consider player index set I = [0, 1] as an uncountable set equipped with sigma field I and probability measure

λ. Assume that the random variable Xi takes value in the polish space E, then
{
Xi
}
i∈I

is a family of random

variables describing some certain attributes of all players. Consider the mapping i ∈ I 7→ Xi(ω) ∈ E, it’s expected

to be nowhere continuous and not measurable. As a result, when dealing with independence under the setting of

a continuum of players, we don’t want to create uncountably many independent copies of Xi and then pair them

up. Instead, we would rather sacrifice some independence properties to exchange for measurability. The definition of

essentially pairwise independence is introduced with this motivation in mind. A family of random variables
{
Xi
}
i∈I

is essentially pairwise independent if for λ − a.e. i ∈ I, Xi is independent of Xj for λ − a.e. j ∈ I. The

existence of essentially pairwise independent families turns out to be not trivial. In order to investigate that, Fubini

extension is introduced.

We neglect the details and the definitions here with one thing in mind that the original product space (I×Ω,I ×
F , λ×P) shall be extended to another space called Fubini’s extension denoted (I⊠Ω,I ⊠F , λ⊠P). The main point

to take here is that on the Fubini extension, the measurability and λ-integrability of the mapping i ∈ I 7→ Xi(ω) ∈ E

is ensured for λ− a.e. i ∈ I and Fubini’s theorem always applies for the integration w.r.t. P and λ (can change the

order of integration as one wishes).

This Fubini extension is called rich if there exists a real valued I ⊠F -measurable essentially pairwise indepen-

dent family
{
Xi
}
i∈I

such that ∀i ∈ I,Xi ∼ U(0, 1). Intuitively, if uniform random variable family exists, random

variable family following any distribution exists.

It turns out that a rich Fubini extension must have λ as an atomless measure (e.g. the Lebesgue measure).

With E as a polish space and µ : I → P(E) to be I -measurable, there exists E-valued I ⊠F -measurable essentially

pairwise independent family
{
Y i
}
i∈I

such that ∀λ− a.e. i ∈ I, Y i induces probability measure µi. In other words, µ

is a mapping that assigns each player a probability distribution to follow. Under measurable condition

of µ, one can always replicate all those distributions on a rich Fubini extension and keep essentially

pairwise independence at the same time. This is not surprising at all since rich Fubini extension already

requires the replication of uniform distribution, from which it’s easy to replicate any probability distribution. It

turns out that the exact law of large number can also be established on the FUbini extension.

Theorem 7 (Exact LLN).
{
Xi
}
i∈I

is a measurable square integrable family of r.v. on Fubini extension, then{
Xi
}
i∈I

are essentially pairwise uncorrelated iff ∀A ∈ I , λ(A) > 0, for P− a.s.∀ω ∈ Ω,∫
A

Xi(ω) dλ(i) =

∫
A

EXi dλ(i) (251)

Remark. Again we skip the details but mention the intuition here. One might be wondering why this is the law of
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large numbers. Actually, λ(A) > 0 implies that A is large enough (countable sets A has measure 0 under atomless

λ), at least uncountable so
∫
A
Xi(ω) dλ(i) is the mean of Xi among a large enough number of players. We expect

this mean to converge to a deterministic quantity related to the expectation, which is
∫
A
EXi dλ(i), the average of

EXi among a large enough number of players. This is exactly the spirit of all variants of law of large number.

At this point, we shift gears to apply the concepts exhibited above under the setting of MFG, trying to generalize

it to a game with a continuum of players. It’s quite obvious that for MFG without common noise, the state dynamics

contains a family of BM
{
W i
}
i∈I

to be essentially pairwise independent under the rich Fubini extension. Interestingly,

it turns out that on the same rich Fubini extension we can solve the problem of the progressive measurable requirement

of
{
αi
t

}
t∈[0,T ]

and
{
µi
t

}
t∈[0,T ]

so MFG with a continuum of players is well-defined.

With the help of the exact LLN, ∀t ∈ [0, T ], we would expect to see that the empirical measure at time t is

actually not a random measure and shall coincide with µt, same as what we have in the traditional MFG setting. As

a result, it’s intuitive to conclude that a solution to the traditional MFG provides NE for the MFG with

a continuum of players.
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Example: Almgren-Chriss Price Impact Model

There are N traders, each having number of shares Xi
t at time t with the rate of trading αi

t as the control. The

traders are identical with dynamics

dXi
t = αi

t dt+ σ dW i
t (252)

on finite time horizon [0, T ]. The stock has price St and each trader hold cash Ki
t at time t. The cost of trading is

modelled by an non-negative convex function c such that c(0) = 0. As a result, the change in cash is modelled by

dKi
t = −(αi

tSt + c(αi
t)) dt. (253)

With h being a deterministic function known to everyone, the price impact is modelled by

dSt =
1

N

N∑
i=1

h(αi
t) dt+ σ0 dW

0
t , (254)

where W 0 is another independent BM. Each trader has wealth V i
t = Ki

t +Xi
tSt at time t and hopes to minimize its

expected cost

J i(α) = E

(∫ T

0

cX(Xi
t) dt+ g(Xi

T )− V i
T

)
. (255)

Here cX and g penalizes against holding more than enough inventories and the trader wants to hold as much wealth

as possible.

We first conduct mean field approximation for this game. The mean field interaction in this finite player game

is through the term 1
N

∑N
i=1 h(α

i
t), which has something to do with the empirical measure on the action space. As

a result, we write the game in terms of a representative trader that

dXt = αt dt+ σ dWt, (256)

dKt = −(αtSt + c(αt)) dt, (257)

dSt =

∫
h dθt dt+ σ0 dW

0
t , (258)

where θt denotes the population measure at time t, taking values in P(A ). By Ito formula,

dVt = −(αtSt + c(αt)) dt+Xt

∫
h dθt dt+ σ0 dW

0
t + Stαt dt+ σ dWt (259)

= −c(αt) dt+Xt

∫
h dθt dt+ σ0 dW

0
t + σ dWt. (260)
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Rewrite the expected cost as

E

[∫ T

0

cX(Xt) dt+ g(XT )−
∫ T

0

(
−c(αt) dt+Xt

∫
h dθt dt+ σ0 dW

0
t + σ dWt

)
dt

]
(261)

= E

[∫ T

0

[cX(Xt) + c(αt)−Xt ⟨h, θt⟩] dt+ g(XT )

]
. (262)

We use the notation ⟨h, θt⟩ =
∫
h dθt to represent the integral of h w.r.t. the measure θt in a compact way. The

trader has running cost

f(t, x, θ, α) = cX(x) + c(α)− x ⟨h, θ⟩ . (263)

This is an example of an extended MFG since the empirical measure on the action space appears in the game.

Recall that in a traditional MFG, only the empirical measure on the state space appears.

To derive a closed-form solution to this EMFG, we assume that c(α) = cα
2 α2, cX(x) = cX

2 x2, g(x) =
cg
2 x

2, h(α) =

hα. This model is known as the Almgren-Chriss linear price impact model and it’s a linear-quadratic EMFG.

The probabilistic approach: Let’s first apply Pontryagin’s maximum principle to solve this game. Write out

the reduced Hamiltonian (constant diffusion coefficient):

H(t, x, y, z, θ, α) = αy +
cX
2
x2 +

cα
2
α2 − x ⟨h, θ⟩ . (264)

Fix the measure θ and take derivative w.r.t. α, set it to zero to get the equilibrium strategy:

α̂ = − y

cα
. (265)

Compute the coefficient in the adjoint BSDE

∂xH = cXx− ⟨h, θ⟩ . (266)

Plugging in the equilibrium strategy gives the FBSDE for a fixed flow of measure {θt} that
dXt = − 1

cα
Yt dt+ σ dWt

dYt = (−cXXt + ⟨h, θt⟩) dt+ Zt dWt

YT = cgXT

. (267)
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Noticing the consistency condition θ̂t = L (α̂t) enables us to write down the MKV-FBSDE:
dXt = − 1

cα
Yt dt+ σ dWt

dYt = −(cXXt +
h
cα
EYt) dt+ Zt dWt

YT = cgXT

. (268)

Finding a closed-form solution to the MKV-FBSDE always requires first turning it into a normal FBSDE. Hence

we hope to find EYt). Taking expectation on both sides of the FSDE provides

dxt = dEXt = − 1

cα
EYt dt = − 1

cα
yt dt. (269)

Taking expectation on both sides of the BSDE provides

dyt = dEYt = −(cXEXt +
h

cα
EYt) dt = −(cXxt +

h

cα
yt) dt, (270)

together with the terminal condition yT = cgxT . Solve this ODE system through affine ansatz yt = ηtxt + χt to see

that

η̇t −
1

cα
η2t +

h

cα
ηt + cX = 0, χ̇t +

h

cα
χt −

1

cα
ηtχt = 0, ηT = cg, χT = 0. (271)

The Riccati equations for ηt, χt can be easily solved to turn the MKV-FBSDE into a normal FBSDE. Afterwards,

put up the affine ansatz Yt = ηtXt + χt for the normal FBSDE once more, where η, χ are deterministic, to solve for

the closed-form solution to this EMFG.

Actually we can also compute the closed-form solution using the analytic approach: Write the HJBE for a fixed

flow of measure {θt} that

∂tv + inf
α

{
α∂xv +

σ2

2
∂xxv +

cX
2
x2 +

cα
2
α2 − x ⟨h, θt⟩

}
= 0, v(T, x) =

cg
2
x2. (272)

Get rid of the inf to see that the equilibrium strategy is

α̂(t, x) = − 1

cα
∂xv(t, x). (273)

Plug back into HJBE to get

∂tv +
σ2

2
∂xxv +

cX
2
x2 − 1

2cα
(∂xv)

2 − x ⟨h, θt⟩ = 0, v(T, x) =
cg
2
x2. (274)
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Instead of writing out the Fokker Planck equation for θt, we use a small trick combining the HJBE with the

McKean-Vlasov nature by requiring θ̂t = L (α̂t). This provides

∂tv +
σ2

2
∂xxv +

cX
2
x2 − 1

2cα
(∂xv)

2 +
h

cα
x · E∂xv(t,X α̂

t ) = 0, v(T, x) =
cg
2
x2. (275)

Use the ansatz v(t, x) = 1
2x

T ηtx+ χtx+ µt to get

1

2
η̇tx

2 + χ̇tx+ µ̇t +
σ2

2
ηt +

cX
2
x2 − 1

2cα
(ηtx+ χt)

2 +
h

cα
x · (ηtEX α̂

t + χt) = 0, v(T, x) =
cg
2
x2. (276)

Use the state dynamics with α̂ plugged in,

dX α̂
t = − 1

cα
(ηtX

α̂
t + χt) dt+ σ dWt. (277)

Take expectation on both sides, dEX α̂
t = − 1

cα
(ηtEX α̂

t +χt) dt,EX α̂
0 = EX0 allows one to represent EX α̂

t in terms of

ηt, χt. Plug EX α̂
t back into the HJBE, one is able to derive three decoupled ODEs for ηt, χt, µt. Solving the ODEs

provides the solution to this EMFG.

Example: Cryptocurrency Mining

Refer to the paper A Mean Field Games Model for Cryptocurrency Mining by Zhongxi Li, et. al.

for the details of the model. This model is also an extended mean field game but the interaction is more complicated.

The mean of the population measure and the strategy both appear in λt, and λt works as the intensity of a time-

inhomogeneous Poisson process Nt. Finally, the Levy process Nt appears in the state dynamics, based on which the

expected utility is maximized.

This model has a closed-form solution for some particular utility functions and one needs to be able to derive

the infinitemsimal generator of a jumped diffusion (refer to Calculating Infinitesimal Generators by Majnu

John and Yihren Wu for details).
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An Introduction to Master Equation

We provide a very brief introduction to master equation, one of the core topics in the theory of

MFG, without rigorous proof but with plenty of intuition. One is welcome to refer to Daniel Lacker’s

notes Mean Field Games and Interacting Particle Systems and Francois Delarue’s paper Mean Field

Games and Master Equation for more details. Most of the following contents are from my PhD

cohort Kalok Lam’s notes. I want to thank Kalok for providing his great notes!

Motivation

As we have mentioned above, MFG is formed as a fixed point problem due to its competitive nature. In detail,

one first fixes the flow of measure {µt} and solves out the optimal strategy α̂. Following this strategy we get the

state dynamics Xµ and it’s required that L (Xµ
t ) = µt to satisfy the consistency condition. In the context above,

we realized that the analytic approach of MFG consists of two parts, the optimality characterized by HJBE and the

consistency characterized by Fokker-Planck equation. However, the analytic approach is not useful for solving the

closed-form solution to MFG since it’s essentially a two-point boundary value problem with one PDE running

forward and the other running backward. As a result, the probabilistic approach setting up MKV-FBSDE stands

out.

However, when it comes to the theory of MFG, e.g. MFG equilibrium as the limit of the NE of finite-player

game, the probabilistic approach seems not to be working that well so one has to return to the analytic approach.

Instead of characterizing the MFG equilibrium as the solution to a two-point boundary value problem, one wants

to find another characterization which is easier to deal with, known as the master equation. The motivation of

master equation lies in the fact that it’s often possible to decouple equations at a price of increasing the

dimension. Instead of the normal value function v(t, x) that has time component t and state component x, why

not consider U(t, x,m) that also has a probability measure m as one of its components. The price we are paying for

U is the existence of the extra measure component m but it’s hopeful that we can find a single PDE w.r.t. U that

characterizes the MFG equilibrium, circumventing the two-point boundary value structure.

Naturally speaking, the very first question we would ask is how shall we differentiate a real-valued function w.r.t.

its measure component m. This leads to our discussion of the calculus on the space of measures.
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Calculus on the Space of Measures

Based on different perspectives, there are several approach defining the derivative w.r.t. measure. One of them

is the L-derivatives established by Lions, understanding the measure through the distribution of random variables.

Another perspective is the linear functional derivatives whose motivation comes from Frechet derivatives on

normed spaces. Last but not least, W-derivatives are built on Wasserstein spaces with metric geodesics, uncovering

the connection with optimal transport.

For now we mainly describe the setting of the linear functional derivatives. Recall the definition of Frechet

derivative that if V,W are normed spaces with f : U → W where U is open in V . f is called Frechet differentiable

at x if ∃A(x) : V → W linear bounded such that

lim
||h||V →0

||f(x+ h)− f(x)−A(x)h||W
||h||V

= 0 (278)

A(x) is just the Frechet derivative of f at x. The key takeaway here is that the derivative of f at x is the slope of

the first-order approximation of f at x.

Organizing A such that the image of x under A which is A(x) : V → W denotes the Frechet derivative of

f : U → W at a single point x ∈ U , then such a mapping acts like

A : U × V → W (279)

∀x ∈ U,A(x) : V → W (280)

without any confusion, we call such A the Frechet derivative of f in the following context.

When it comes to the master equation, we care about some function U : P(Rd) → R that maps a probability

measure on Rd to a real number in the most general setting. It’s immediately clear that the derivative of U w.r.t.

measure m shall be a mapping P(Rd)× P(Rd) → R. However, we argue below through a simple example that the

derivative δU
δm can actually be simplified to a mapping P(Rd)× Rd → R.

Remark. As an analogue, f(x) = x2 has derivative 2 at x = 1 but what we call as derivative is the pointwise action

of f ′, i.e. the mapping f ′(x) = 2x.

From the definition of Frechet derivative above, it seems that f ′ shall be a mapping R × R → R but why is the

derivative f ′(x) = 2x actually a mapping R → R? The answer is that there is some simplification going on. Written

in the language of Frechet derivative,

lim
h→0

|(x+ h)2 − x2 − 2xh|
h

= 0 (281)

so A(x) maps h to 2xh, which means the Frechet derivative A(x, t) = 2x · t is linear in t. As a result, the action on

t is neglected and only the coefficient 2x is maintained and formed as the derivative f ′(x) = 2x we are familiar with.

Pointwisely, A(x) maps a single real number to another single real number, which can always be represented by a

real number multiplication. Similarly, now that U : P(Rd) → R, we have A(m) = δU
δm (m) : P(Rd) → R maps a single

measure on Rd to a single real number pointwisely, which can always be represented by integration, i.e. integrating
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some real-valued function on Rd w.r.t. this measure on Rd! As a result, it’s guaranteed that A(m) = δU
δm (m) can be

represented as a mapping Rd → R. Thanks to this clever simplification, δU
δm is no longer a function on the space of

measures.

In the following context, we shall always keep in mind that

δU

δm
: P(Rd)× Rd → R (282)

δU

δm
(m) : Rd → R (283)

δU

δm
(m)(v) ∈ R (284)

where m ∈ P(Rd) is the measure where the derivative is evaluated and v ∈ Rd is the variable of the function δU
δm (m).

Since δU
δm (m) : Rd → R, the integration of this function w.r.t. a measure provides a mapping P(Rd) → R that

µ 7→
∫
Rd

δU

δm
(m)(v)µ(dv)

def
=

〈
δU

δm
(m), µ

〉
(285)

interpreted as the action of measure µ on the function δU
δm (m) through integration.

Finally, we can write out the definition of linear functional derivative. If U : P(Rd) → R, then U has a linear

functional derivative if ∀m ∈ P(Rd),∃ δU
δm (m) : Rd → R such that

∀m′ ∈ P(Rd), U(m′)− U(m) =

∫ 1

0

〈
δU

δm
(m+ (m′ −m)t),m′ −m

〉
dt (286)

recall that ⟨·, ·⟩ denotes the action of the measure on the function through integration, so∫ 1

0

〈
δU

δm
(m+ (m′ −m)t),m′ −m

〉
dt =

∫ 1

0

[∫
Rd

δU

δm
(m+ (m′ −m)t)(v) (m′ −m)(dv)

]
dt (287)

Remark. Written in the language of Frechet derivative, the derivative of U at measure m denoted A(m) : P(Rd) →
R acts on µ and maps it to

〈
δU
δm (m), µ

〉
(through the simplification we have mentioned in the remark above) denoted

A(m)(µ) =

〈
δU

δm
(m), µ

〉
(288)

the definition of linear functional derivative is saying that

∀m′ ∈ P(Rd), U(m′)− U(m) =

∫ 1

0

A(m+ (m′ −m)t)(m′ −m) dt (289)

i.e. A works as the ”slope” in the first-order approximation, the same spirit as the Frechet derivative! The

convex combination m+ (m′ −m)t appears as the perturbed version of m to ensure that it is still a legal probability

measure. The definition of linear functional derivative is smartly designed such that the chain rule formally holds.
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There is an equivalent variational definition of the derivative δU
δm that one shall also keep in mind since it often

helps with the calculation of some important examples. The definition is through identifying δU
δm (m) as the unique

function on Rd that satisfies

∀m′ ∈ P(Rd),

[
d

dt
U(m+ (m′ −m)t)

] ∣∣∣
t=0

=

〈
δU

δm
(m),m′ −m

〉
(290)

it can be shown that two definitions are equivalent. Here we provide the calculation of one direction in the remark

below.

Remark. By the original definition of linear functional derivative,[
d

dt
U(m+ (m′ −m)t)

] ∣∣∣
t=0

= lim
h→0

U(m+ (m′ −m)h)− U(m)

h
(291)

= lim
h→0

∫ 1

0

〈
δU
δm (m+ (m′ −m)th), (m′ −m)h

〉
dt

h
(292)

= lim
h→0

∫ 1

0

〈
δU

δm
(m+ (m′ −m)th),m′ −m

〉
dt (293)

=

〈
δU

δm
(m),m′ −m

〉
(294)

proves that the variational definition holds.

In most cases the linear functional derivative δU
δm (m, v) is regular in v so the intrinsic derivative can be defined

DmU(m, v)
def
= Dv

δU

δm
(m, v) (295)

taking value in Rd. It might not be clear at this moment why the intrinsic derivative is defined like this, but we shall

see later that it naturally appears in the Ito-Krylov’s formula and the master equation.

One can similarly define the second intrinsic derivative of U w.r.t. measure m as

D2
mU(m, v, v′)

def
= Dm(DmU(·, v))(m, v′) (296)

Since the original function U : P(Rd) → R and the intrinsic derivative DmU : P(Rd) × Rd → Rd, it’s clear that

each time of intrinsic differentiation results in a new Rd component in its domain, that’s why the component v′ ∈ Rd

appears in the definition of D2
mU . It’s clear from the definition that

D2
mU(m, v, v′) = Dv′

(
δDmU(·, v)

δm
(m)

)
(v′) (297)
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Example: Linear Functional Derivative and Intrinsic Derivative

Let’s try to calculate some examples under d = 1. WLOG, those calculations also holds for general d with a

slight generalization.

The simplest example is U(m) = ⟨ϕ,m⟩ =
∫
R ϕ(v)m(dv). Use the variational definition,

U(m+ (m′ −m)t) = U(m) + tU(m′ −m) (298)

taking derivative w.r.t. t evaluated at t = 0 gives U(m′ −m) = ⟨ϕ,m′ −m⟩ so

δU

δm
(m, v) = ϕ(v), DmU(m, v) = ϕ′(v) (299)

as a result, taking ϕ(v) = vn results in U mapping measure m to its n-th moment, in this case

DmU(m, v) = nvn−1 (300)

On the other hand, we can also consider any function of ⟨ϕ,m⟩ denoted U(m) = F (⟨ϕ,m⟩) where F : R → R is

C1. Similarly,

U(m+ (m′ −m)t) = F [⟨ϕ,m⟩+ t⟨ϕ,m′ −m⟩] (301)

taking derivative w.r.t. t gives

F ′[⟨ϕ,m⟩+ t⟨ϕ,m′ −m⟩] · ⟨ϕ,m′ −m⟩ (302)

evaluate at t = 0

F ′[⟨ϕ,m⟩] · ⟨ϕ,m′ −m⟩ (303)

to get

δU

δm
(m, v) = F ′[⟨ϕ,m⟩] · ϕ(v), DmU(m, v) = F ′[⟨ϕ,m⟩] · ϕ′(v) (304)

as a result, if F (x) = x2, ϕ(v) = v is specified, U maps measure m to its first moment squared, in this case

DmU(m, v) = 2

∫
R
vm(dv) (305)

naturally, due to linearity of differentiation, if U maps measure m to its variance, then

DmU(m, v) = 2v − 2

∫
R
vm(dv), ⟨DmU(m, ·),m⟩ = 0 (306)
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those intrinsic derivatives always appear in the LQ setting.

Consider another example where

U(m) =

∫
ϕ(x, y)m(dx)m(dy) = ⟨ϕ,m×m⟩ (307)

where m×m means the product measure. First calculate linear functional derivative

U(m+ (m′ −m)t) = U(m) + ⟨ϕ,m× (m′ −m)t⟩+ ⟨ϕ, (m′ −m)t×m⟩+ ⟨ϕ, (m′ −m)t× (m′ −m)t⟩ (308)

= U(m) + t⟨ϕ,m× (m′ −m)⟩+ t⟨ϕ, (m′ −m)×m⟩+ t2⟨ϕ, (m′ −m)× (m′ −m)⟩ (309)

differentiate w.r.t. t and evaluate at t = 0 to get

⟨ϕ,m× (m′ −m)⟩+ ⟨ϕ, (m′ −m)×m⟩ =
∫

ϕ(x, y)m(dx) (m′ −m)(dy) +

∫
ϕ(x, y) (m′ −m)(dx)m(dy) (310)

=

∫ [∫
ϕ(x, y)m(dx) +

∫
ϕ(y, x)m(dx)

]
(m′ −m)(dy) (311)

=

〈∫
(ϕ(x, ·) + ϕ(·, x)) m(dx),m′ −m

〉
(312)

assuming that Fubini’s theorem holds (by adding constraints on ϕ), this tells us the linear functional derivative

δU

δm
(m, v) =

∫
(ϕ(x, v) + ϕ(v, x)) m(dx) (313)

from which we calculate the intrinsic derivative

DmU(m, v) = Dv

[∫
(ϕ(x, v) + ϕ(v, x)) m(dx)

]
(314)

=

∫
(ϕ′

2(x, v) + ϕ′
1(v, x)) m(dx) (315)

where ϕ′
1 is the partial derivative of ϕ w.r.t. its first component and ϕ′

2 is the one w.r.t. its second component.

Repeat this procedure, calculate the linear functional derivative of DmU(m, v) seen as a function in m, i.e. set

V (m) = DmU(m, v) then

V (m+ (m′ −m)t) = V (m) + t

∫
(ϕ′

2(x, v) + ϕ′
1(v, x)) (m

′ −m)(dx) (316)

differentiate w.r.t. t and evaluate at t = 0 to get∫
(ϕ′

2(x, v) + ϕ′
1(v, x)) (m

′ −m)(dx) = ⟨ϕ′
2(·, v) + ϕ′

1(v, ·),m′ −m⟩ (317)
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with a new variable v′ ∈ Rd introduced

δV

δm
(m, v′) = ϕ′

2(v
′, v) + ϕ′

1(v, v
′) (318)

the second intrinsic derivative is calculated

D2
mU(m, v, v′) = Dv′

δV

δm
(m, v′) = ϕ′′

12(v
′, v) + ϕ′′

21(v, v
′) (319)

where ϕ′′
12 is the second-order partial derivative of ϕ first taking partial derivative w.r.t. the second component then

w.r.t. the first component. This is an important example for the second-order intrinsic derivative of the function U

that maps measure m to Eϕ(X,Y ) where X,Y ∼ m are independent.

Remark. The linear functional derivative has chain rule to hold for the composition of U with F : R → R. The

proof can be easily written through the variational definition once again, so it’s left to the readers. We just use an

example calculated above to illustrate the idea of chain rule.

Consider U that maps measure m to its mean and F (x) = x2, clearly F ◦U maps measure m to its mean squared.

By chain rule, the outer layer derivative shall be the derivative of F evaluated at U(m), which is 2U(m) = 2
∫
xm(dx).

The inner layer linear functional derivative is just δU
δm (m) = 1. The product gives the linear functional derivative of

the composition

δ(F ◦ U)

δm
(m) = 2

∫
xm(dx) · 1 (320)
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Example: Mean Field Interaction

When it comes to solving MFG, mean field interaction comes into play through a function of the empirical

measure. If there are N players with the state of player i given as xi ∈ Rd, the empirical measure on state space Rd

is

µN
x =

1

N

N∑
i=1

δxi (321)

mean field interaction can always be represented as

u(x) = U(µN
x ) (322)

where U : P(Rd) → R and u : Rd×N → R. Mean field interaction through u is always observed in the dynamics or

the cost functional of a MFG. As a result, it’s crucial to figure out ∂xiu and ∂xj ,xiu. WLOG we assume d = 1, i.e.

the state takes value as real number.

Our calculation starts from the definition of partial derivative and linear functional derivative

u(x+ hei)− u(x) = U

 1

N

 N∑
j=1,j ̸=i

δxj + δxi+h

− U

(
1

N

N∑
i=1

δxi

)
(323)

=

∫ 1

0

〈
δU

δm

(
1

N

N∑
i=1

δxi +
1

N
(δxi+h − δxi)t

)
,
1

N
(δxi+h − δxi)

〉
dt (324)

let’s calculate the bracket (the action of integration) that〈
δU

δm

(
1

N

N∑
i=1

δxi +
1

N
(δxi+h − δxi)t

)
,
1

N
(δxi+h − δxi)

〉
(325)

=
1

N

∫
δU

δm

(
1

N

N∑
i=1

δxi +
1

N
(δxi+h − δxi)t

)
(v) (δxi+h − δxi)(dv) (326)

=
1

N

[
δU

δm

(
1

N

N∑
i=1

δxi +
1

N
(δxi+h − δxi)t

)
(xi + h)− δU

δm

(
1

N

N∑
i=1

δxi +
1

N
(δxi+h − δxi)t

)
(xi)

]
(327)

at this point, we see xi + h and xi, which matches the difference quotient in terms of h, as a result,

u(x+ hei)− u(x)

h
(328)

=
1

N

∫ 1

0

[
δU
δm

(
1
N

∑N
i=1 δxi + 1

N (δxi+h − δxi)t
)
(xi + h)− δU

δm

(
1
N

∑N
i=1 δxi + 1

N (δxi+h − δxi)t
)
(xi)

]
h

dt (329)

let’s denote ν(t, h) = 1
N

∑N
i=1 δxi + 1

N (δxi+h − δxi)t for simplicity, when h → 0, we expect to see Dv
δU
δm , which is the
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intrinsic derivative DmU , and also ν(t, h) → µN
x at the same time. Simple calculation tells us

∂xiu(x) =
1

N

∫ 1

0

DmU(µN
x )(xi) dt =

1

N
DmU(µN

x )(xi) (330)

the first-order partial derivative of mean field interaction w.r.t. state component, together with its

connection with intrinsic derivative w.r.t. measure.

Remark. Previously, we fail to provide interpretation of the intrinsic derivative. However, through this example,

one can see the natural appearance of the differentiation w.r.t. v.

When it comes to the second-order partial derivative,

∂xiu(x+ hej)− ∂xiu(x) =
1

N

(
DmU(µN

x+hej )(x
i + hδij)−DmU(µN

x )(xi)
)

(331)

=
1

N

(
DmU(µN

x+hej )(x
i + hδij)−DmU(µN

x+hej )(x
i) +DmU(µN

x+hej )(x
i)−DmU(µN

x )(xi)
)

(332)

here we abuse the notation, δij denotes a real number which is 1 if i = j and 0 otherwise (it does not stand for

a measure), notice that hδij makes a difference when i = j happens. Let’s first focus on the second difference

DmU(µN
x+hej

)(xi)−DmU(µN
x )(xi) by noticing that on fixing the variable v = xi, DmU can once again be seen as a

function in the measure component, and the definition of linear functional derivative applies

DmU(µN
x+hej )−DmU(µN

x ) (333)

=

∫ 1

0

〈
δ

δm
DmU(µN

x + (µN
x+hej − µN

x )t), µN
x+hej − µN

x

〉
dt (334)

=

∫ 1

0

∫
δ

δm
DmU(µN

x + (µN
x+hej − µN

x )t)(v′) (µN
x+hej − µN

x )(dv′) dt (335)

=
1

N

∫ 1

0

[
δ

δm
DmU(µN

x + (µN
x+hej − µN

x )t)(xj + h)− δ

δm
DmU(µN

x + (µN
x+hej − µN

x )t)(xj)

]
dt (336)

here the variable v = xi is temporarily omitted and a new variable v′ is introduced. The difference quotient structure

in terms of v′ appears again, take h → 0 to see

DmU(µN
x+hej

)−DmU(µN
x )

h
(337)

→ 1

N

∫ 1

0

[
Dv′

δ

δm
DmU(µN

x )(xj)

]
dt (338)

=
1

N

∫ 1

0

D2
mU(µN

x )(xj) dt =
1

N
D2

mU(µN
x )(xj) (h → 0) (339)

don’t forget that the variable correspondence is given by m = µN
x , v = xi, v′ = xj in the limit (we omitted the

variable v in the calculation, have to add it back), written in the form of the definition of the second-order intrinsic

66



MFG notes written by Haosheng Zhou CONTENTS

derivative D2
mU(m)(v)(v′), the limit is actually

1

N
D2

mU(µN
x )(xi)(xj) (340)

finally let’s consider the first part of the difference which may be non-zero only if i = j. When i = j,

DmU(µN
x+hej

)(xi + hδij)−DmU(µN
x+hej

)(xi)

h
=

DmU(µN
x+hei

)(xi + h)−DmU(µN
x+hei

)(xi)

h
(341)

→ Dv

[
DmU(µN

x )
]
(xi) (h → 0) (342)

combine two parts to see

∂xjxiu(x) =
1

N2
D2

mU(µN
x )(xi)(xj) + δij

1

N
Dv

[
DmU(µN

x )
]
(xi) (343)

Remark. The definition of the second-order intrinsic derivative is also natural. To clarify, the term Dv

[
DmU(µN

x )
]
(xi)

means first calculating DmU(m, v), evaluate it at m = µN
x so that it becomes a function in terms of v and then take

the partial derivative w.r.t. v and evaluate at v = xi. The calculation above still holds when the state takes value in

Rd for general d.

To sum up, we proved the following theorem

Theorem 8 (Differential of Mean Field Interaction). Now that the state takes value in Rd in an N -player game,

with U : P(Rd) → R, u : RNd → R and µN
x = 1

N

∑N
i=1 δxi as empirical measure on state space, u(x) = U(µN

x ) as

mean field interaction, then

Dxiu(x) =
1

N
DmU(µN

x )(xi) (344)

DxjDxiu(x) =
1

N2
D2

mU(µN
x )(xi)(xj) + δij

1

N
Dv

[
DmU(µN

x )
]
(xi) (345)

can be represented in terms of the intrinsic derivatives of U .
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Ito-Krylov’s Formula for a Flow of Measure

We have learnt how to differentiate the mean field interaction w.r.t. the state variable x in the example above.

However, the state itself is a stochastic process in the setting of MFG, with the empirical measure induced to be a

flow of random measure. To be specific, assume that the state dynamics is given by

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (346)

we are curious about dU(µN
Xt

) whereXt is a random variable so µN
Xt

is a random empirical measure µN
Xt

= 1
N

∑N
i=1 δXi

t
.

Since the propagation of chaos in MFG ensures the asymptotic independence of each player’s state X1, ..., XN , we

would like to identify X1
t , ..., X

N
t as i.i.d. random variables following the given state dynamics as N → ∞. At this

point, apply Ito formula

dU(µN
Xt

) =

N∑
i=1

DxiU(µN
Xt

) dXi
t +

1

2

N∑
i,j=1

DxjDxiU(µN
Xt

) d
〈
Xi, Xj

〉
t

(347)

notice that DxiU,DxjDxiU are calculated in the theorem above, plug in those conclusions together with the state

dynamics to get

dU(µN
Xt

) =
1

N

N∑
i=1

DmU(µN
Xt

)(Xi
t) dX

i
t +

1

2

N∑
i,j=1

[
1

N2
D2

mU(µN
Xt

)(Xi
t)(X

j
t ) + δij

1

N
Dv

[
DmU(µN

x )
]
(Xi

t)

]
d
〈
Xi, Xj

〉
t

(348)

=
1

N

N∑
i=1

DmU(µN
Xt

)(Xi
t) · b(t,Xi

t) dt (349)

+
1

2

N∑
i=1

Tr

([
1

N2
D2

mU(µN
Xt

)(Xi
t)(X

i
t) +

1

N
Dv

[
DmU(µN

x )
]
(Xi

t)

]
· σσT (t,Xi

t)

)
dt (350)

+
1

N

N∑
i=1

DmU(µN
Xt

)(Xi
t) · σ(t,Xi

t) dW
i
t (351)

taking N → ∞, from the propagation of chaos once again, µN
Xt

converges to µt = L (Xt) in the setting of MFG,

which is a deterministic flow of measure and the randomness is gone. Meanwhile, the drift term has its limit if there
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is enough regularity that

1

N

N∑
i=1

DmU(µN
Xt

)(Xi
t) · b(t,Xi

t) → EXt∼µt
[DmU(µt)(Xt) · b(t,Xt)] (352)

=

∫
Rd

[DmU(µt)(v) · b(t, v)]µt(dv) (353)

1

2

N∑
i=1

Tr

(
1

N2
D2

mU(µN
Xt

)(Xi
t)(X

i
t) · σσT (t,Xi

t)

)
→ 0 (354)

1

2

N∑
i=1

Tr

(
1

N
Dv

[
DmU(µN

x )
]
(Xi

t) · σσT (t,Xi
t)

)
→ 1

2
EXt∼µt

[
Tr
(
Dv [DmU(µt)] (Xt) · σσT (t,Xt)

)]
(355)

=
1

2

∫
Rd

Tr
(
Dv [DmU(µt)] (v) · σσT (t, v)

)
µt(dv) (356)

here the second limit gives zero since there is N2 on the denominator (of order larger than N), the type of convergence

is not specified here but an SLLN-type theorem applies.

On the LHS of the equation, as N → ∞, dU(µN
Xt

) converges to dU(µt). Since dU(µt) shall be deterministic,

heuristically the local-MG part in Ito formula above does not contribute. As a result, we get the Ito-Krylov’s formula

for a flow of measure.

Theorem 9 (Ito-Krylov’s Formula for a Flow of Measure). Under certain regularity conditions, if U : P(Rd) → R
and Xt has dynamics in Rd

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (357)

denote µt = L (Xt) as a deterministic flow of measure, then

dU(µt) =

[∫
Rd

[DmU(µt)(v) · b(t, v)]µt(dv) +
1

2

∫
Rd

Tr
(
Dv [DmU(µt)] (v) · σσT (t, v)

)
µt(dv)

]
dt (358)

Remark. The normal Ito formula enables us to quantify the change in f(Xt) w.r.t. time t where {Xt} is a stochastic

process. Ito-Krylov’s formula for a flow of measure, on the other hand, enables us to quantify the change in the value

of U(µt) w.r.t. time t. Luckily, due to the propagation of chaos in MFG, randomness in the empirical measure goes

away as N → ∞ so the flow of measure is deterministic asymptotically.
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Feynman-Kac Correspondence of Master Field

The previously mentioned analytic approach of MFG is based on HJBE for optimality, coupled with Fokker-

Planck equation for consistency. On the optimality side, on fixing the flow of measure {µt}, we put up value function

and HJBE describes how the value function evolve. On the consistency side, plugging in the optimal control α̂ solved

out from HJBE, we derive the state dynamics Xµ
t and require µt = L (Xµ

t ) to hold.

As mentioned beforehand, the motivation of master equation is mainly to find another characterization for this

two-point boundary value problem by putting up a value function that also has a measure as one of its components.

Since Feynman-Kac formula tells us the connection between SDE and PDE through a value function construction,

by constructing the master field U(t,Xt, µt) as a new value function, we expect to see a PDE w.r.t. U which we call

the master equation.

For a finite-horizon MFG, assume that we already have the NE strategy α̂ plugged into the state dynamics, each

representative player shall see the state dynamics

dXt = b(t,Xt, µt) dt+ σ(t,Xt, µt) dWt (359)

without control α but with flow of measure {µt}. Here we assume that µt = L (Yt) comes from

dYt = b′(t, Yt) dt+ σ′(t, Yt) dWt (360)

i.e. the flow of measure {µt} is generated by another diffusion with different coefficients b′, σ′. Through Feynman-Kac

correspondence, the master field (value function) shall be naturally defined as

U(t, x,m)
def
= E

[∫ T

t

f(s,Xs, µs) ds+ g(XT , µT )
∣∣∣Xt = x, µt = m

]
, (x ∈ Rd,m ∈ P(Rd)) (361)

where f is the running cost and g is the terminal cost.

Similar to the derivation of Kolmogorov’s backward equation, apply the tower property for ∀h > 0

U(t,Xt, µt) = E

[
U(t+ h,Xt+h, µt+h) +

∫ t+h

t

f(s,Xs, µs) ds
∣∣∣Xt, µt

]
(362)

and then the Ito formula, notice that when it comes to the measure component, the Ito-Krylov’s formula for a flow
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of measure applies

U(t,Xt, µt) = U(t,Xt, µt) (363)

+ E

[∫ t+h

t

(
∂tU(s,Xs, µs) ds+ ∂xU(s,Xs, µs) dXs +

1

2
∂xxU(s,Xs, µs) d ⟨X,X⟩s + f(s,Xs, µs)

)
ds
∣∣∣Xt

]
(364)

+

∫ t+h

t

[∫
Rd

[DmU(s,Xs)(µs)(v) · b′(s, v)]µs(dv) +
1

2

∫
Rd

Tr
(
Dv [DmU(s,Xs)(µs)] (v) · σ′(σ′)T (s, v)

)
µs(dv)

]
ds

(365)

the term on the second row on the RHS corresponds to the contribution of the change in t,Xt (from Ito formula)

and the term on the third row on the RHS corresponds to the contribution of the change in measure component µt

(from Ito-Krylov’s formula). Be careful that here µt = L (Yt) so the coefficients are b′, σ′ in the third row on the

RHS.

It’s obvious that the second row on the RHS has a representation in terms of the infinitesimal generator L. After

a standard procedure plugging in the dynamics of Xt, taking expectation on both sides to get rid of the local-MG

term, divide by h and set h → 0, the equation implies the backward PDE∂tU(t, x,m) + LU(t, x,m) + LU(t, x,m) + f(t, x,m) = 0

U(T, x,m) = g(x,m)
(366)

where the operator L is defined to match the contribution of the measure component from Ito-Krylov’s

formula, i.e.

LU(t, x,m)
def
=

∫
Rd

[DmU(t, x)(m)(v) · b′(t, v)]m(dv) +
1

2

∫
Rd

Tr
(
Dv [DmU(t, x)(m)] (v) · σ′(σ′)T (t, v)

)
m(dv)

(367)

where b′, σ′ are the drift and diffusion coefficients of the dynamics whose law is the flow of measure. That’s all for

the Feynman-Kac correspondence of the master field.

Remark. In the correspondence above, L is defined through the dynamics of Xt while L is defined through the

dynamics of Yt. Since we are not yet entering the setting of MFG, L and L has no connection at this moment.

To clarify the notation once more, in the definition of L, the term DmU(t, x)(m)(v) means that when t, x

are fixed, U can be seen as a function on the space of measures so its intrinsic derivative DmU(t, x)(m, v) can be

calculated. Evaluate it at measure m, it becomes a function on Rd so one can integrate it w.r.t. a measure on Rd.

Similarly, Dv [DmU(t, x)(m)] (v) means to fix t, x, calculate intrinsic derivative DmU(t, x)(m, v), evaluate at measure

m, differentiate w.r.t. v and evaluate at v.
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MFG and Master Equation

When it comes to MFG, where the state dynamics of the representative player is controlled, given by

dXt = b(t,Xt, µt, αt) dt+ σ(t,Xt, µt, αt) dWt (368)

together with running cost f and terminal cost g, obviously the first step is to calculate NE strategy α̂ through

HJBE. Set up the McKean-Vlasov Hamiltonian matching the term in HJBE

H(t, x, µ, α, y, z) = b(t, x, µ, α) · y + 1

2
Tr(σσT (t, x, µ, α) · z) + f(t, x, µ, α) (369)

the NE strategy α̂(t, x, µ, y, z) is given by

α̂(t, x, µ, y, z) = argmax
α

H(t, x, µ, α, y, z) (370)

plug back α̂ into the state dynamics and the running cost, so the game is no longer controlled and we return to

the setting where the state dynamics has its coefficients only depending on t, x, µ, the same as what we have in the

Feynman-Kac correspondence above.

Keep in mind the correspondence of HJBE that y stands for the state derivative of value function and z for the

second-order state derivative of value function. Since the master field is constructed in the similar way to the value

function, we expect y to stand for ∂xU and z to stand for ∂xxU in the current context.

Noticing the fact that MFG is a fixed point problem, we expect to see µt = L (Xt) at equilibrium, i.e. a

McKean-Vlasov state dynamics, which means that L and L shall both be built upon the same dynamics in

MFG equilibrium! As a result, the backward PDE given by the Feynman-Kac correspondence shall characterize

the MFG equilibrium. The following theorem formalizes the argument above and provides the master equation as a

characterization of MFG equilibrium.

Theorem 10 (Master Equation as a Characterization of MFG Equilibrium). For a given MFG under some regularity

condition, put up McKean-Vlasov Hamiltonian

H(t, x, µ, α, y, z) = b(t, x, µ, α) · y + 1

2
Tr(σσT (t, x, µ, α) · z) + f(t, x, µ, α) (371)

derive the NE strategy

α̂(t, x, µ, y, z) = argmax
α

H(t, x, µ, α, y, z) (372)

plug back into the state dynamics and the running cost to get an uncontrolled game with dynamics

dXt = b(t,Xt, µt, α̂(t,Xt, µt, ∂xU(t,Xt, µt), ∂xxU(t,Xt, µt))) dt+ σ(t,Xt, µt, α̂(t,Xt, µt, ∂xU(t,Xt, µt), ∂xxU(t,Xt, µt))) dWt

(373)

72



MFG notes written by Haosheng Zhou CONTENTS

and running cost

f(t,Xt, µt, α̂(t,Xt, µt, ∂xU(t,Xt, µt), ∂xxU(t,Xt, µt))) (374)

based on which operators L,L are calculated. The master equation is given by∂tU(t, x,m) + LU(t, x,m) + LU(t, x,m) + f(t, x,m) = 0

U(T, x,m) = g(x,m)
(375)

where the f is the master equation is the running cost with α̂ plugged in. The solution U(t, x,m) gives the MFG

equilibrium µ̂t = U(t,Xt,L (Xt)).

Remark. One of the regularity condition required is that the game has unique MFG equilibrium starting

from any (t,m) pair (at any time t and at any population measure m). This condition can be implied by the

Lasry-Lions monotonicity condition mentioned in the previous chapters.

In the last section we mentioned that generally L and L are constructed based on different dynamics. It’s because

of the fixed point problem structure of MFG that L and L matches at equilibrium.
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Example: Linear Quadratic Flocking Model

Let’s calculate one example to show that master equation recovers the same MFG equilibrium derived above

through the probabilistic approach. The representative player has state dynamics

dXt = αt dt+ σ dWt (376)

in three-dimensional space, i.e. d = 3, and cost functional

J(α) = E
∫ T

0

f(t,Xt, µt, αt) dt (377)

with no terminal cost, the running cost is

f(t, x, µ, α) =
κ2

2
|x− µ|2 + 1

2
|α|2 (378)

where µ denotes the mean of measure µ.

Set up the McKean-Vlasov Hamiltonian,

H(t, x, µ, α, y, z) = α · y + 3σ2

2
+

κ2

2
|x− µ|2 + 1

2
|α|2 (379)

minimize w.r.t. α

α̂(t, x, µ, y, z) = −y (380)

plug back α̂(t,Xt, µt, ∂xU, ∂xxU) to get the uncontrolled state dynamics

dXt = −∂xU(t,Xt, µt) dt+ σ dWt (381)

and the uncontrolled running cost

f(t, x,m) =
κ2

2
|x−m|2 + 1

2
|∂xU(t, x,m)|2 (382)

The operators L,L are given by

LU = −|∂xU |2 + σ2

2
∆U (383)

LU = −
∫
Rd

[DmU(t, x)(m)(v) · ∂xU(t, v,m)]m(dv) +
σ2

2

∫
Rd

Tr (Dv [DmU(t, x)(m)] (v)) m(dv) (384)
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write down the master equation

∂tU − |∂xU |2 + σ2

2
∆U +

κ2

2
|x−m|2 + 1

2
|∂xU |2 (385)

−
∫
Rd

[DmU(t, x)(m)(v) · ∂xU(t, v,m)]m(dv) +
σ2

2

∫
Rd

Tr (Dv [DmU(t, x)(m)] (v)) m(dv) = 0 (386)

with terminal condition U(T, x,m) = 0.

Put up ansatz

U(t, x,m) = F (t, x,m) (387)

based on the fact that in LQ game the measure makes a difference only through its mean. At this point, intrinsic

derivatives of U can be calculated

DmU(t, x)(m, v) = Dv

[
δU(t, x, ·)

δm
(m, v)

]
= Dv

[
∂mF · δm

δm
(m, v)

]
(t, x,m) = Dv [∂mF · v] (t, x,m) = ∂mF (t, x,m)

(388)

where we use the chain rule of linear functional derivative and the well-known fact that U(m) = m has δU
δm (m, v) = v.

Since DmU(t, x)(m) does not contain v, the last term Dv[DmU(t, x)(m)] in the master equation is zero. Now the

equation becomes

∂tF − 1

2
|∂xF |2 + σ2

2
∆F +

κ2

2
|x−m|2 −

∫
Rd

[∂mF (t, x,m) · ∂xF (t, v,m)]m(dv) = 0 (389)

with terminal condition F (T, x,m) = 0.

Put up another ansatz according to the fact that in LQ game the value function is quadratic and has mean-

reversion term included

F (t, x,m) =
1

2
ft|x−m|2 + gt (390)

where f, g are deterministic. Now that

∂tF =
1

2
ḟt|x−m|2 + ġt (391)

∂xF = ft(x−m) (392)

∆F = 3ft (393)

∂mF = ft(m− x) (394)
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plug into the master equation, the integral on Rd vanishes and we are left with

1

2
ḟt|x−m|2 + ġt −

1

2
f2
t |x−m|2 + σ2

2
3ft +

κ2

2
|x−m|2 = 0 (395)

set coefficients equal to zero respectively to get the Ricatti equation

1
2 ḟt −

1
2f

2
t + κ2

2 = 0

fT = 0

ġt +
3σ2

2 ft = 0

gT = 0

(396)

so

ft = κ
e2κ(T−t) − 1

e2κ(T−t) + 1
(397)

solves out the the optimal control

α̂t = −∂xU(t,Xt,L (Xt)) = −ft(Xt − L (Xt)) = −ft(Xt − EXt) (398)

which is the same MFG equilibrium as what we have solved from the probabilistic approach.
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Mean Field Control (MFC) Problems

In this section, we introduce the setting and the way to solve men field control problems. Different from mean

field games where the population measure is assumed to be not immediately affected by the strategy, mean field

control has the population measure to be a function of the strategy. This leads to a completely different setting from

mean field game since it’s no longer a fixed point problem. However, it turns out that this setting can be interpreted

as a cooperative game, working as a supplementary part of mean field game.

The introduction starts with going back to the calculus of variation on the space of measures, which is an

essential technical tool. Different from the linear functional derivative approach introduced above, we set up the

framework from the perspective of L-derivatives, which is introduced in Carmona and Delarue’s book for mean field

game.

L-derivative

The idea of L-derivative is simple. It’s hard to perturb a probability measure, but there exists a random variable

whose law is the probability measure. Therefore, one can lift the function of measure into a function of a random

variable and perturb the random variable instead. In this sense, we can use the definition of Frechet derivative to

calculate the derivative w.r.t. a random variable and try to come back to the derivative w.r.t. a measure component.

We start with considering the measure µ ∈ P2(Rd) to be in the 2-Wasserstein space and a square-integrable

random variable X ∈ L2(Rd) is said to correspond to µ if L (X) = µ. For any function u : P2(Rd) → R, there
exists a lifting ũ : L2(Rd) → R such that u(L (X)) = ũ(X). This is the first step turning the variation in probability

measures into the variation in random variables.

We say u is L-differentiable at µ0 = L (X0) iff ũ is Frechet differentiable at X0, and denote the Frechet derivative

as Dũ(X0). Clearly by the definition of Frechet derivative, Dũ(X0) : L
2(Rd) → R maps a random variable to a real

number, which indicates that Dũ(X0) ∈ [L2(Rd)]∗ ∼= L2(Rd). As a result, we denote Dũ(X0) = Y ∈ L2(Rd) such

that it maps any random variable Z ∈ L2(Rd) to the action of Y onto Z, i.e., ⟨Y,Z⟩ = E(Y · Z). At this point, we

need to check that this definition of L-derivative is intrinsic, meaning that the law of Dũ(X0), as a random variable

in L2(Rd), does not depend on the choice of the random variable X0 such that L (X0) = µ0. This technical proof

is presented in the book and we do not provide details here.

After checking that the L-derivative is well-defined, we would like to simplify the structure of Dũ(X0) by noticing

that Dũ(X) ∈ σ(X), ∀X ∈ L2(Rd). This implies the existence of ξµ : Rd → Rd such that Dũ(X) = ξµ(X) a.s., ∀X ∈
L2(Rd), given µ such that µ = L (X). We refer the readers to the book for the proof. It’s worth noting that this

simplifies Dũ from a mapping L2(Rd) → L2(Rd) to a mapping Rd → Rd, and that such ξµ is uniform in X (intrinsic)

and only depends on the selection of µ.

As a result, it’s natural to set ∂µu(µ0)(X0) := Dũ(X0) = ξµ0
(X0), where µ0 = L (X0) and ∂µu(µ0)(X0) is

the derivative of u w.r.t. measure component µ, evaluated at µ0, acting on X0. By considering only the action of
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∂µu(µ0) instead of the image, the L-derivative is defined as:

∂µu(µ0) :Rd → Rd (399)

x 7→ ξµ0(x). (400)

Remark. Deriving the L-derivative ∂µu(µ0) is typically separated into two steps: (i) write out the lifting ũ and

calculate its Frechet derivative Dũ(X0), µ0 = L (X0). (ii) Find out the action ξµ0
: Rd → Rd such that Dũ(X0) =

ξµ0
(X0), and write the L-derivative at µ0 as a deterministic function ∂µu(µ0)(x) = ξµ0

(x). For the purpose of clarity,

I recommend always writing down both components µ0, x to avoid mistakes in calculations.

The Frechet derivative Dũ(X0) ∈ L2(Rd) provides the first-order expansion at µ0 = L (X0) that

u(µ) = u(µ0) + E[Dũ(X0) · (X −X0)] + o(∥X −X0∥). (401)

Writing in the notation of the L-derivative, the first order expansion at µ0 = L (X0) provides

u(µ) = u(µ0) + E[∂µu(L (X0))(X0) · (X −X0)] + o(∥X −X0∥). (402)

Example: Calculation of L-Derivative

Let’s check some important examples for the calculation of the L-derivative. Those examples shall give exactly

the same answer as calculated through the linear functional derivative approach, but in a more intuitive and natural

way.

Consider u(µ) =
∫
h(x) dµ(x) = ⟨h, µ⟩ with its lifting ũ(X) = Eh(X), L (X) = µ.

ũ(X + εU)− ũ(X) = E[h(X + εU)− h(X)] = Eh′(X)εU + o(ε∥U∥). (403)

Matching this equation with the first-order expansion provides Dũ(µ)(X) = h′(X), so

∂µu(µ)(x) = h′(x). (404)

Remark. Counterintuitively, u can be written as the action of h on µ but the L-derivative is not h but h′!

Another example: for even function h, u(µ) = ⟨h ∗ µ, µ⟩ =
∫ ∫

h(x − y) dµ(y) dµ(x) with its lifting ũ(X) =∫
Eh(x−X) dµ(x), L (X) = µ. To stress the dependence of µ on X, we denote µ = PX .

ũ(X + εU)− ũ(X) =

∫
Eh(x−X − εU) dPX+εU (x)−

∫
Eh(x−X) dPX(x) (405)

=

∫
E[h(x−X − εU)− h(x−X)] dPX+εU (x) +

∫
Eh(x−X) d(PX+εU − PX)(x). (406)
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The first integral has first-order term

−ε

∫
Eh′(x−X)U dPX(x), (407)

while the second integral needs an application of Fubini∫
Eh(x−X) dPX+εU (x) =

∫ ∫
h(x− y) dPX+εU (x) dPX(y) =

∫
Eh(X + εU − x) dPX(x) (408)

so the second integral is∫
Eh(X + εU − x) dPX(x)−

∫
Eh(x−X) dPX(x) =

∫
Eh(X + εU − x) dPX(x)−

∫
Eh(X − x) dPX(x) (409)

≈
∫

Eh′(X − x)εU dPX(x), (410)

providing the first-order terms. Adding up to see that ũ(X + εU)− ũ(X) has first-order terms

E
∫

h′(X − x)εU dPX(x)− E
∫

h′(x−X)εU dPX(x) = E
[
2

∫
h′(X − x) dPX(x) · εU

]
, (411)

since h′ is an odd function. As a result, Dũ(X) = 2
∫
h′(X − x) dPX(x), and

∂µu(µ)(x) = 2(h′ ∗ µ)(x). (412)

Another example: u(µ) =
∫
v(x, µ) dµ(x) with its lifting ũ(X) = EX∼µv(X,µ), L (X) = µ.

ũ(X + εU)− ũ(X) = EX∼µ[v(X + εU,L (X + εU))− v(X,L (X))] (413)

= EX∼µ[v(X + εU,L (X + εU))− v(X,L (X + εU))] (414)

+ EX∼µ[v(X,L (X + εU))− v(X,L (X))]. (415)

The first expectation has first-order terms EX∼µ[∂xv(X,µ) · εU ]. The second expectation requires more work. Since

there is a variation in the measure component, we apply the first-order characterization of ∂µv(x, µ) to get

v(x,L (X + εU)) = v(x,L (X)) + EX∼µ,U [∂µv(x,L (X))(X) · εU ] + o(ε∥U∥). (416)

Since the equation holds for ∀x ∈ Rd, it also holds if we change the variable x to a random variable X. Taking

expectation on both sides gives

E[v(X,L (X + εU))− v(X,L (X))] ≈ EY∼µ,UEX∼µ[∂µv(X,L (X))(Y ) · εU ]. (417)
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At this point, it is clear that ũ(X + εU)− ũ(X) has first-order terms

EX∼µ,U

[
∂xv(X,µ) · εU +

∫
∂µv(x

′,L (X))(X) dµ(x′) · εU
]
. (418)

As a result, Dũ(X) = ∂xv(X,µ) +
∫
∂µv(x

′, µ)(X) dµ(x′). We have shown that

∂µu(µ)(x) = ∂xv(x, µ) +

∫
∂µv(x

′, µ)(x) dµ(x′). (419)

As an extension, we set v(x, µ) =
∫
g(x, x′) dµ(x′) such that u(µ) =

∫ ∫
g(x, x′) dµ(x′) dµ(x) = ⟨g, µ× µ⟩.

Obviously,

∂xv(x, µ) =

∫
∂xg(x, x

′) dµ(x′). (420)

The L-derivative of v w.r.t. µ can be easily calculated using previous conclusions by viewing x as fixed:

∂µv(x, µ)(y) = ∂x′g(x, y). (421)

Combining both facts yields

∂µu(µ)(x) =

∫
∂xg(x, y) dµ(y) +

∫
∂x′g(y, x) dµ(y). (422)

This expression intuitively makes sense since it’s symmetric in the two variables of g.

Example: L-Derivative of the Shannon Entropy

The shannon entropy for a probability measure µ (whose density function is assumed to exist) is defined as

H(µ) := E[− log pX(X)], (423)

where L (X) = µ and pX denotes the density function of X, whose distribution is µ. Rewrite the Shannon entropy:

H(µ) = −
∫

log pX(x) dµ(x) =

∫
v(x, µ) dµ(x), (424)

where v(x, µ) := − log pX(x) and the dependence of v on µ is through pX . From previous conclusions, ∂µH(µ)(x) =

∂xv(x, µ) +
∫
∂µv(x

′, µ)(x) dµ(x′) and ∂xv(x, µ) = −∇x log pX(x), so it suffices to calculate ∂µv(x, µ). Let’s try to

calculate this L-derivative again through the Gateaux derivative on fixing x.

v(x,L (X + εU))− v(x,L (X)) = − log
pX+εU (x)

pX(x)
= − log

∫
pX(y)pεU (x− y) dy

pX(x)
, (425)
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by assuming that U is independent of X. To facilitate calculations, we further assume U ∼ U(−1, 1) WLOG so that

εU ∼ U(−ε, ε), implying pεU (x− y) = 1
2ε I(−ε,ε)(x− y). Since we only care about first-order terms, we apply Taylor

expansion for pX(y) at y = x to get pX(y) ≈ pX(x) + p′X(x)(y − x) +
p′′
X(x)
2 (y − x)2 (we maintain terms up to the

second-order for a specific reason). Combining all those approximations yields∫
pX(y)pεU (x− y) dy ≈ 1

2ε

(
2εpX(x) +

1

3
p′′X(x)ε3

)
. (426)

As a result,

v(x,L (X + εU))− v(x,L (X)) = − log

(
1 +

p′′X(x)

6pX(x)
ε2
)

≈ − p′′X(x)

6pX(x)
ε2. (427)

If we try to match it with E[Dṽ(X) · εU ], we see Dṽ(X) ≡ 0 since the difference above contains a quadratic term in

ε. As a result, it might seems a little bit counter-intuitive but we get

∂µv(x, µ) ≡ 0. (428)

Plugging back to the equation, we see that

∂µH(µ)(x) = −∇x log pX(x), L (X) = µ. (429)

Remark. We remark that the derivative w.r.t. the measure can also be calculated through the linear functional

derivative. Consider the perturbation in pX introduced in terms of another density q, the difference is

−
∫
(pX(x) + εq(x)) log(pX(x) + εq(x)) dx+

∫
pX(x) log pX(x) dx (430)

≈ −ε

∫
q(x) log pX(x) dx− ε

∫
pX(x)

q(x)

pX(x)
dx+ o(ε), (431)

since log pX(x)+εq(x)
pX(x) ≈ ε q(x)

pX(x) provides the first-order terms. Writing the difference as
〈

δH
δpX

(µ), εq
〉
results in

δH

δpX
(µ)(x) = − log pX(x)− 1. (432)

Notice that taking a derivative w.r.t. x yields the intrinsic derivative ∂µH(µ)(x) = ∂x

(
δH
δpX

(µ)
)
(x) = −∇x log pX(x),

which aligns with the L-derivative derived above.
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Linear Functional Derivative and L-Derivative

In previous context, the intrinsic derivative is defined as the derivative w.r.t. x of the linear functional derivative
δu
δµ (µ)(x). However, L-derivative is by itself intrinsic, so we expect that the definitions provided by two different ways

are actually the same, which is also implied in the remark above. By the definition of linear functional derivative,

ũ(X + εU)− ũ(X) = u(L (X + εU))− u(L (X)) (433)

=

∫ 1

0

∫
δu

δµ
(µε

t )(x) d[L (X + εU)− L (X)](x) dt, (434)

where µε
t := tL (X + εU) + (1− t)L (X) provides a flow of interpolated probability measures. To connect with the

representation in terms of Dũ, we wish to write this difference as E[Dũ(X) · εU ]. Hence:∫ 1

0

∫
δu

δµ
(µε

t )(x) d[L (X + εU)− L (X)](x) dt (435)

=

∫ 1

0

EX,U

[
δu

δµ
(µε

t )(X + εU)− δu

δµ
(µε

t )(X)

]
dt (436)

= EX,U

∫ 1

0

[
δu

δµ
(µε

t )(X + εU)− δu

δµ
(µε

t )(X)

]
dt (437)

≈ EX,U

(∫ 1

0

[(
∂x

δu

δµ
(µε

t )

)
(X)

]
dt · εU

)
(ε → 0). (438)

This provides an interesting relationship:

Dũ(X) = lim
ε→0

∫ 1

0

[(
∂x

δu

δµ
(µε

t )

)
(X)

]
dt, (439)

which implies that Dũ(X) = ∂x

[
δu
δµ (L (X))

]
(X). As a result,

∂µu(µ)(x) = ∂x

[
δu

δµ
(µ)

]
(x). (440)

This proves that the L-derivative is the space derivative of the linear functional derivative! At this point, we finally

understand why it’s necessary to define the intrinsic derivative by differentiating w.r.t. x once more when introducing

the linear functional derivative approach.

At this point, all the conclusions we established through the linear functional derivative approach still holds,

including the Ito-Krylov’s formula for a flow of measure and the Feynman-Kac correspondence for the master field.

We refer the readers to the previous context for the details.

Remark. The Lasry-Lions condition ensures the uniqueness of the equilibrium of a MFG. From the perspective of

measure derivative, it actually means that the cost functionals f, g are L-convex in the measure component µ, and

convexity always has a close connection with the uniqueness of the minimizer. Similarly, the propagation of chaos in

the McKean-Vlasov SDE can be explained using Ito-Krylov’s formula as an application (chapter 5.7).
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MFC Problem Setup

Consider a finite player game with N players and the interactions being mean field interactions. The state

dynamics of player i is given by:

dXi
t = b(t,Xi

t , µ
N
Xt

, αi
t) dt+ σ(t,Xi

t , µ
N
Xt

, αi
t) dW

i
t , (441)

where µN
Xt

denotes the empirical measure. Each player uses a public feedback function ϕ : [0, T ]×Rd → R acting on

the private states, such that αi
t = ϕ(t,Xi

t). Each player aims to minimize the expected cost:

J i(ϕ) := E

[∫ T

0

f(t,Xi
t , µ

N
Xt

, αi
t) dt+ g(Xi

T , µ
N
XT

)

]
, (442)

for some public running cost f and terminal cost g.

Similar to MFG, in MFC, we require a large number of identical players to conduct the mean field approximation

to turn the problem into a game only for the representative player (single-agent). However, different from MFG where

we first fix a flow of measure to solve the equilibrium strategy, in the setting of MFC, we first take a limit in the sense

of the mean field regime. A propagation of chaos statement ensures that the empirical measure (random measure)

has the weak limit as a deterministic measure as N → ∞. As a result, the state dynamics, in the mean field regime,

is a controlled McKean-Vlasov SDE,

dXt = b(t,Xt,L (Xt) , αt) dt+ σ(t,Xt,L (Xt) , αt) dWt, αt = ϕ(t,Xt). (443)

The representative player aims to minimize the expected cost in the mean field regime:

J(ϕ) := E

[∫ T

0

f(t,Xt,L (Xt) , αt) dt+ g(XT ,L (XT ))

]
. (444)

MFG is a fixed point problem, it assumes that the population measure does not immediately change as each player

changes her strategy, which resembles the competitive game (one first makes a decision then observe the change of the

population since everybody competes with each other). On the other hand, MFC is an optimization problem, since

the population measure is always exactly equal to the marginal law L (Xt). This means that the population measure

changes immediately as the players’ strategies change, which resembles the situation of a cooperative game (players

work towards a same goal, if the strategy changes, everybody immediately knows how the population measure is

going to change). It turns out that those two schemes generally give totally different equilibrium as an approximation

to that of the finite player game with mean field interaction.

Nevertheless, it does not necessarily mean that MFG and MFC are completely different topics. In the proba-

bilistic approach solving MFG introduced in previous context, we see how to solve a MFG by transforming it into a

McKean-Vlasov FBSDE, which has close connections with MFC problems.
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The Probabilistic Approach

Due to the McKean-Vlasov nature, we decide to view the measure L (Xt) also as one component of the state

variable, i.e., formulating the state of the system at time t as (Xt,L (Xt)). Adopting the idea of L-derivative lifting

a function in measures to a function in random variables, the modification of the Hamiltonian naturally follows:

H(t, x, X̃, y, z, α) := b(t, x, µ, α) · y + σ(t, x, µ, α) · z + f(t, x, µ, α), µ = L (X) , (445)

replacing the µ in H, the normal Hamiltonian for MFG with the lifting provided by X̃, an independent copy of X

on a cloned probability space (Ω̃, F̃ , P̃). The MFC Hamiltonian H is defined as:

H (t,X, Y, Z, β) := EH(t,X, X̃, Y, Z, β), (446)

where X,Y, Z, X̃, β are random variables instead of the corresponding deterministic variables and the expectation is

taken w.r.t. X,Y, Z, β. In Pontryagin maximum principle, we need the differential of H w.r.t. X. Notice that the

variation in X results in the change of H in two ways: (i) through the variation in X component and the expectation;

(ii) through the variation in µ = L (X) component. Simple calculations using the first-order characterization of the

L-derivative show that

H (t,X + εU, Y, Z, β)− H (t,X, Y, Z, β) (447)

= E[H(t,X + εU,L (X + εU) , Y, Z, β)−H(t,X,L (X) , Y, Z, β)] (448)

≈ E[∂xH(t,X,L (X) , Y, Z, β) · εU ] (449)

+ E[H(t,X,L (X + εU) , Y, Z, β)−H(t,X,L (X) , Y, Z, β)], (450)

the second expectation term containing the variation in the measure component seems hard to deal with. However,

notice that

E[H(t,X,L (X + εU) , Y, Z, β)−H(t,X,L (X) , Y, Z, β)] (451)

= EY,Z,β

[∫
H(t, x,L (X + εU) , Y, Z, β) dµ(x)−

∫
H(t, x,L (X) , Y, Z, β) dµ(x)

]
, µ = L (X) (452)

≈ EY,Z,β

[∫
EX,U (∂µH(t, x,L (X) , Y, Z, β)(X) · εU) dµ(x)

]
(453)

= Ẽ
[
EX,U

(
∂µH(t, X̃,L (X) , Ỹ , Z̃, β̃)(X) · εU

)]
(454)

= EX,U

[
Ẽ
(
∂µH(t, X̃,L (X) , Ỹ , Z̃, β̃)(X)

)
· εU

]
. (455)

To clarify, we have used Fubini’s theorem and the fact that H(t, x,L (X + εU) , Y, Z, β)−H(t, x,L (X) , Y, Z, β) ≈
EX,U [∂µH(t, x,L (X) , Y, Z, β)(X) · εU ] in the first-order sense. Here Ỹ , Z̃, β̃ are all random variables on the cloned

probability space (Ω̃, F̃ , P̃), they are independent of their original versions but have exactly the same law. The

notation E denotes the expectation on the probability space (Ω,F ,P), while Ẽ denotes the expectation on the cloned
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probability space (Ω̃, F̃ , P̃). To sum up, we have derived the first-order approximation

H (t,X + εU, Y, Z, β)− H (t,X, Y, Z, β) (456)

≈ E
[(

∂xH(t,X,L (X) , Y, Z, β) + Ẽ
(
∂µH(t, X̃,L (X) , Ỹ , Z̃, β̃)(X)

))
· εU

]
. (457)

This provides the state derivative of the MFC Hamiltonian we will be using in the adjoint equation:

DXH (t,X, Y, Z, β) = ∂xH(t,X,L (X) , Y, Z, β) + Ẽ
(
∂µH(t, X̃,L (X) , Ỹ , Z̃, β̃)(X)

)
. (458)

At this point, we define the adjoint processes and the adjoint equations, as a preparation for the pontryagin

principle for MFC problems. The couple (Y,Z) is called the adjoint process of X if they satisfy the MKV-BSDE

(adjoint equations):dYt = −
[
∂xH(t,Xt,L (Xt) , Yt, Zt, αt) + Ẽ

(
∂µH(t, X̃t,L (Xt) , Ỹt, Z̃t, α̃t)(Xt)

)]
dt+ Zt dWt

YT = ∂xg(XT ,L (XT )) + Ẽ
(
∂µg(X̃T ,L (XT ))(XT )

) . (459)

Remark. As expected, the adjoint BSDE is very similar to the normal one in the stochastic control problems.

Differently, Ẽ terms are added both to the BSDE and to the terminal condition. This is completely due to the

McKean-Vlasov nature of the MFC problems. In MFG, the flow of measure is fixed so the L-derivatives are neglected,

whereas in MFC, the variation in the measure needs to be taken into consideration.

At this point, we provide the Pontryagin maximum principle for solving MFC problems without a proof. The

proof uses the convexity of the Hamiltonian and the cost functionals, which is similar to the Pontryagin principle for

stochastic control problems.

Theorem 11. Let α̂ be the minimizer

α̂(t, x, µ, y, z) := arg inf
α

H(t, x, µ, y, z, α). (460)

Let (X,Y, Z) be the solution to the following MKV-FBSDE:

dXt = b(t,Xt,L (Xt) , α̂(t,Xt,L (Xt) , Yt, Zt)) dt+ σ(t,Xt,L (Xt) , α̂(t,Xt,L (Xt) , Yt, Zt)) dWt

dYt = −∂xH(t,Xt,L (Xt) , Yt, Zt, α̂(t,Xt,L (Xt) , Yt, Zt)) dt

−Ẽ
(
∂µH(t, X̃t,L (Xt) , Ỹt, Z̃t, α̂(t, X̃t,L (Xt) , Ỹt, Z̃t))(Xt)

)
dt+ Zt dWt

YT = ∂xg(XT ,L (XT )) + Ẽ
(
∂µg(X̃T ,L (XT ))(XT )

) . (461)

Then under the condition that g is convex in (x, µ) and H is convex in (x, µ, α), the equilibrium strategy is given by

α̂(t,Xt,L (Xt) , Yt, Zt).
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Example: Ayagari’s Growth Model

Let’s come back to the Ayagari’s growth model, solving it as a MFC problem instead of a MFG.

We skip the interpretation of the model and directly formulate the game. Viewed as a finite player game, the

state dynamics is given by 
dZi

t = (1− Zi
t) dt+ σ dW i

t

dAi
t = [(1− α)Kα

t Z
i
t + (αKα−1

t − δ)Ai
t − cit] dt

EZi
0 = 1

, (462)

where Kt =
1
N

∑N
i=1 A

i
t and cit is the strategy process. The player tries to minimize the negative expected utility

J i(c) = −E

[∫ T

0

U(cit) dt+Ai
T

]
. (463)

Firstly, let’s conduct mean field approximation to turn this game into a MFC problem only for the representative

player: 
dZt = (1− Zt) dt+ σ dWt

dAt = [(1− α)L (At)
α
Zt + (αL (At)

α−1
− δ)At − ct] dt

EZ0 = 1

. (464)

Notice that we are not keeping the population measure through the notation µt, since we never fix the flow of measure

in MFC problem. The state dynamics of the MFC problem is given by a controlled McKean-Vlasov SDE. The player

tries to minimize:

J(c) = −E

[∫ T

0

U(ct) dt+AT

]
(465)

Firstly, write the state dynamics in the vector form[
dZt

dAt

]
=

[
1− Zt

(1− α)L (At)
α
Zt + (αL (At)

α−1
− δ)At − ct

]
dt+

[
σ

0

]
dWt. (466)
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The coefficients have the form

b(t, (z, a), µ, c) =

[
1− z

(1− α)µαz + (αµα−1 − δ)a− c

]
, (467)

σ(t, (z, a), µ, c) =

[
σ

0

]
, (468)

f(t, (z, a), µ, c) = −U(c), (469)

g((z, a), µ) = −a. (470)

Calculate the reduced Hamiltonian (diffusion coefficient is constant):

H(t, (z, a), µ, (yz, ya), c) = yz(1− z) + ya[(1− α)µαz + (αµα−1 − δ)a− c]− U(c), (471)

take derivative w.r.t. c to get the equilibrium strategy

ĉ(t, (z, a), µ, (yz, ya)) = (−ya)
− 1

γ . (472)

calculate the coefficient of the adjoint BSDE

∂zH = −yz + ya(1− α)µα, ∂aH = ya(αµ
α−1 − δ), (473)

∂zg = 0, ∂ag = −1, ∂µg = 0. (474)

Keep in mind that for the MFC case we need to also calculate the L-derivative of the Hamiltonian:

∂µH(µ)(x′) = ya(1− α)zαµα−1 + αaya(α− 1)µα−2, (475)

since ∂µµ ≡ 1. Write down the MKV-FBSDE:

dZt = (1− Zt) dt+ σ dWt

dAt = [(1− α)(EAt)
αZt + [α(EAt)

α−1 − δ]At − (−Ya,t)
− 1

γ ] dt

EZ0 = 1

dYa,t = −Ya,t[α(EAt)
α−1 − δ] dt− α(1− α)(EAt)

α−1E(Ya,tZt) dt− α(α− 1)(EAt)
α−2E(AtYa,t) dt+ Za,t dWt

Ya,T = −1

.

(476)

We don’t present the BSDE w.r.t. Yz,t since it does not appear in the equilibrium strategy.
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Remark. As a comparison, we provide the MKV-FBSDE in the probabilistic approach solving for MFG equilibrium:
dAt = [(1− α)(EAt)

αZt + (α(EAt)
α−1 − δ)At − (−Ya,t)

− 1
γ ] dt

dYa,t = −Ya,t(α(EAt)
α−1 − δ) dt+ Za,t dWt

Ya,T = −1

. (477)

The difference is in the driver of the adjoint BSDE, where the one for MFC has extra terms provided by Ẽ terms in

the Pontryagin maximum principle.

Notice that the solution to the BSDE is deterministic since Za,t does not appear elsewhere, E(AtYa,t) =

Ya,tEAt,E(Ya,tZt) = Ya,t since EZt = 1. This results in the MKV-FBSDE being:
dAt = [(1− α)(EAt)

αZt + [α(EAt)
α−1 − δ]At − (−Ya,t)

− 1
γ ] dt

dYa,t = −Ya,t[α(EAt)
α−1 − δ] dt+ Za,t dWt

Ya,T = −1

, (478)

which is the same as the MKV-FBSDE for MFG!

As a result, Aiyagari’s growth model provides an example where the MFC and the MFG equilibria coincide!

However, we emphasize that this is NOT the general case. As we can see, the MKV-FBSDE systems are actually

different when first written down. It is with the help of the special structure of Ya,t being deterministic (which is not

generally true) that the systems become identical.
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Example: Linear-Quadratic MFG

Now we calculate the MFC equilibrium. On finite time horizon [0, T ], the state dynamics:

dXt = αt dt+ σ dWt, (479)

the running cost and terminal cost:

f(x, α, µ) =
1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2, g(x, µ) = c4(x− µ)2. (480)

Consider the reduced Hamiltonian:

H(t, x, µ, y, z, α) = αy +
1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2. (481)

Simple calculations show the equilibrium strategy as a function in {µt}:

α̂(t, x, µ, y, z) = −y. (482)

Compute the coefficients in the adjoint BSDE:

∂xH = 2c1(x− µ) + 2c2x, ∂xg = 2c4(x− µ). (483)

Write down the FBSDE for a given flow of measure {µt}:
dXt = −Yt dt+ σ dWt

dYt = −[2c1(Xt − µt) + 2c2Xt] dt+ Zt dWt

YT = 2c4(XT − µT )

. (484)

The consistency condition requires µt = L (Xt), which results in the MKV-FBSDE:
dXt = −Yt dt+ σ dWt

dYt = −[2c1(Xt − EXt) + 2c2Xt] dt+ Zt dWt

YT = 2c4(XT − EXT )

. (485)
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Example: Linear-Quadratic MFC

On finite time horizon [0, T ], the state dynamics:

dXt = αt dt+ σ dWt, EX0 = 0, (486)

the running cost and terminal cost:

f(x, α, µ) =
1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2, g(x, µ) = c4(x− µ)2. (487)

We first solve it as a MFG through the probabilistic approach in this section. Fix the flow of measure {µt} and

consider the reduced Hamiltonian:

H(t, x, µ, y, z, α) = αy +
1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2. (488)

Simple calculations show the equilibrium strategy as a function in {µt}:

α̂(t, x, µ, y, z) = −y. (489)

Compute the coefficients in the adjoint BSDE:

∂xH = 2c1(x− µ) + 2c2x, ∂xg = 2c4(x− µ). (490)

In the MFC regime, L-derivatives are needed:

∂µH(µ)(x′) = 2c1(µ− x) + 2c3µ, ∂µg(µ)(x
′) = 2c4(µ− x), (491)

since (∂µµ)(µ)(x
′) ≡ 1. Write down the MKV-FBSDE:

dXt = −Yt dt+ σ dWt

dYt = −[2c1(Xt − EXt) + 2c2Xt] dt− 2c3EXt dt+ Zt dWt

YT = 2c4(XT − EXT )

. (492)

This is because

Ẽ[2c1(L (Xt)− X̃t) + 2c3EXt] = 2c3EXt, Ẽ[2c4(L (XT )− X̃T )] = 0. (493)
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Hence the MKV-FBSDE in the MFC regime:
dXt = −Yt dt+ σ dWt

dYt = −[2(c1 + c2)Xt − 2(c1 − c3)EXt] dt+ Zt dWt

YT = 2c4(XT − EXT )

. (494)

Remark. To see the clear difference, the MKV-FBSDE in the MFG regime:
dXt = −Yt dt+ σ dWt

dYt = −[2(c1 + c2)Xt − 2c1EXt] dt+ Zt dWt

YT = 2c4(XT − EXT )

. (495)

When c3 ̸= 0 (penalty coefficient for large population mean) and EXt ̸= 0, there is a significant difference between

MFG and MFC equilibrium. On the other hand, the values of c1, c2, c4 (penalty coefficient for deviation from the

mean and for a large state) does not cause the difference.
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Example: Reinforcement Learning with Mean Field Interaction

We consider a simple RL problem with state space S = {0, 1}, action space A = {s := ’stay’,m := ’move’}.
Whenever one chooses to stay, state s transits to itself with probability 1 − p and transits to the other state with

probability p << 1. Whenever one chooses to move, state s transits to itself with probability p and transits to the

other state with probability 1 − p. Here p denotes the level of uncertainty contained in the transition kernel and is

assumed to be close to zero. The reward function r(s, µ) = εs − µ, i.e., at time n one gets reward r(Sn, µ), solely

based on the current state and the limiting distribution of the Markov chain {Sn}, where 0 < ε << 1. Notice that

here we adopt the asymptotic formulation of mean field interactions, i.e. instead of maintaining a flow of measure,

we maintain a single measure µ as the limiting distribution of the state process {Sn}π, given the policy π. This MDP

model is a time-discretized game with discrete state, action spaces, and the mean field interaction only appears in

the reward function but not the transition kernel.

We want to show that in MFG and MFC regimes, the optimal policy are actually the opposite. Let’s first check

the MFG case where the limiting measure µ is fixed. In this case, we can ignore the µ in the reward function since

it takes the same value regardless of the action we are taking. This problem now becomes a normal MDP, which we

know has a deterministic optimal policy π∗ such that

π∗ = argmax
π

Eπ

[ ∞∑
n=0

γnr(Sn, µ)

]
. (496)

When p is small enough and γ is close enough to 1, we have enough reason to believe that the optimal policy is given

by π∗(0) = m,π∗(1) = s. This is because the reward now solely depends on the state and state 1 results in a higher

reward. (One can calculate the q∗ function using Bellman optimality equation to see why it holds). Such π∗ is the

optimal policy on fixing the measure µ. Now we match the limiting distribution of {Sn}π∗
and the measure µ to

meet the consistency condition. Clearly, the Markov chain {Sn}π∗
has transition matrix

[
p 1− p

p 1− p

]
, which results

in the limiting distribution µ({0}) = p, µ({1}) = 1− p. This concludes the calculation for the MFG equilibrium.

On the other hand, in the case of MFC, the limiting distribution µ changes immediately as the policy π changes.

When ε is close enough to zero, −µ dominates the reward function, so the player would like to minimize µ in order

to look for a higher reward. As a result, the optimal policy is given by π∗(0) = s, π∗(1) = m, which results in the

equilibrium limiting measure µ({0}) = 1− p, µ({1}) = p.

Clearly, two limiting regimes provide totally opposite answers. The delay in the response of the population

measure w.r.t. the change in the policy causes the equilibrium measure to concentration on state 1 in MFG, even

if a large mean of the measure results in a low reward (c.f. prisoner’s dilemma). The immediate response of the

population measure w.r.t. the change in the policy causes the equilibrium measure to concentration on state 0

in MFC. The players are able to understand the negative effect of a large mean of the measure and successfully

achieves the Pareto optimality. Through this simple example, we can better understand why MFG and MFC stand

for competitive and cooperative games respectively.
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Infinite-horizon MFG and MFC

In the context of infinite time horizon, we restrict ourselves to the special case, in which the coefficients and cost

functionals are time-homogeneous, i.e. b(t, x, µ, α) = b(x, µ, α), f(t, x, µ, α) = f(x, µ, α). For a stochastic control

problem under this setting, the control and the value function turn out to be time-homogeneous, i.e., only showing

dependence on the state variable x. In the case of MFG and MFC, however, those restrictions do not suffice to ensure

the time-homogeneity of the equilibrium strategy. The problem lies in the time-dependence of the flow of measure

{µt}, as will be shown in the examples below.

Remark. If one adopts the asymptotic formulation of MFG and MFC, i.e., the coefficients and cost functionals only

depend on a single measure µ, which is the limiting distribution of the state process, instead of a flow of measure,

then the equilibrium strategy turns out to be time-homogeneous.

In the first example, we have the state dynamics:

dXt = αt dt+ σ dWt, (497)

the running cost:

f(x, α, µ) =
1

2
α2 + c1(x− µ)2, (498)

and one wishes to minimize the expected cost:

J(α) := E
[∫ ∞

0

e−rtf(Xt, αt, µt) dt

]
. (499)

We solve this problem by first solving the finite-horizon version with a terminal cost added:

g(x, µ) = c4(x− µ)2, (500)

and identifying a new running cost

h(t, x, α, µ) = e−rtf(x, α, µ). (501)

In this case, one wishes to minimize the expected cost:

J(α) := E

[∫ T

0

h(t,Xt, αt, µt) dt+ g(XT , µT )

]
. (502)

After solving for the equilibrium strategy, we set c4 → 0, T → ∞ to approximate the equilibrium strategy of the

infinite-horizon problem. Notice that all dependencies on the measure component µ are through (x − µ)2, hence

MFC and MFG equilibrium coincide.
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Example 1 (MFG). Consider the reduced Hamiltonian:

H(t, x, µ, y, z, α) = αy + e−rt

[
1

2
α2 + c1(x− µ)2

]
. (503)

Simple calculations show the equilibrium strategy as a function in {µt}:

α̂(t, x, µ, y, z) = −erty. (504)

Compute the coefficients in the adjoint BSDE:

∂xH = 2c1e
−rt(x− µ), ∂xg = 2c4(x− µ). (505)

Write down the FBSDE for a given flow of measure {µt}:
dXt = −ertYt dt+ σ dWt

dYt = −2c1e
−rt(Xt − µt) dt+ Zt dWt

YT = 2c4(XT − µT )

. (506)

The consistency condition requires µt = L (Xt), which results in the MKV-FBSDE:
dXt = −ertYt dt+ σ dWt

dYt = −2c1e
−rt(Xt − EXt) dt+ Zt dWt

YT = 2c4(XT − EXT )

. (507)

Taking expectation on both sides provides

EYt ≡ 0, EXt ≡ EX0. (508)

Using affine ansatz Yt = ηtXt + µt yieldsη̇t − ertη2t + 2c1e
−rt = 0, ηT = 2c4

µ̇t − ertηtµt − 2c1e
−rtEX0 = 0, µT = −2c4EX0

. (509)

Setting c4 → 0, T → ∞ gives

ηt → η∗t , µt → µ∗
t , (510)
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where

η̇∗t − ert(η∗t )
2 + 2c1e

−rt = 0, η∞ = 0, (511)

µ̇∗
t − ertη∗t µ

∗
t − 2c1e

−rtEX0 = 0, µ∞ = 0. (512)

Solve the ODE with ansatz η∗t = e−rtξt to get

ξt =
−r +

√
r2 + 8c1
2

, (513)

η∗t = e−rt−r +
√
r2 + 8c1
2

. (514)

Plug η∗ into the ODE of µ∗ to yield

µ∗
t = − 2c1EX0

r + −r+
√
r2+8c1
2

e−rt. (515)

As a result, the equilibrium strategy is given by

α̂(t, x) = −ert(η∗t x+ µ∗
t ) = −−r +

√
r2 + 8c1
2

x+
2c1EX0

r + −r+
√
r2+8c1
2

. (516)

Remark. This example provides an equilibrium strategy that is time-homogeneous. Although µt changes as t changes,

its mean is constant is time while its variance is time-dependent. However, the mean field interaction is only through

the mean of the measure, which results in the time-homogeneous equilibrium strategy.

As another example, we have the state dynamics:

dXt = (αt − µt) dt+ σ dWt, (517)

the running cost:

f(x, α, µ) =
1

2
α2 + c1(x− µ)2, (518)

and one wishes to minimize the expected cost:

J(α) := E
[∫ ∞

0

e−rtf(Xt, αt, µt) dt

]
. (519)

We solve this problem by first solving the finite-horizon version with a terminal cost added:

g(x, µ) = c4(x− µ)2, (520)

95



MFG notes written by Haosheng Zhou CONTENTS

and identifying a new running cost

h(t, x, α, µ) = e−rtf(x, α, µ). (521)

In this case, one wishes to minimize the expected cost:

J(α) := E

[∫ T

0

h(t,Xt, αt, µt) dt+ g(XT , µT )

]
. (522)

After solving for the equilibrium strategy, we set c4 → 0, T → ∞ to approximate the equilibrium strategy of the

infinite-horizon problem.

Example 2 (MFG). Consider the reduced Hamiltonian:

H(t, x, µ, y, z, α) = (α− µ)y + e−rt

[
1

2
α2 + c1(x− µ)2

]
. (523)

Simple calculations show the equilibrium strategy as a function in {µt}:

α̂(t, x, µ, y, z) = −erty. (524)

Compute the coefficients in the adjoint BSDE:

∂xH = 2c1e
−rt(x− µ), ∂xg = 2c4(x− µ). (525)

Write down the FBSDE for a given flow of measure {µt}:
dXt = (−µt − ertYt) dt+ σ dWt

dYt = −2c1e
−rt(Xt − µt) dt+ Zt dWt

YT = 2c4(XT − µT )

. (526)

The consistency condition requires µt = L (Xt), which results in the MKV-FBSDE:
dXt = (−EXt − ertYt) dt+ σ dWt

dYt = −2c1e
−rt(Xt − EXt) dt+ Zt dWt

YT = 2c4(XT − EXT )

. (527)

Taking expectation on both sides provides

EYt ≡ 0, EXt = e−tEX0. (528)
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Using affine ansatz Yt = ηtXt + µt yieldsη̇t − ertη2t + 2c1e
−rt = 0, ηT = 2c4

µ̇t − ertηtµt − 2c1e
−rte−tEX0 − ηte

−tEX0 = 0, µT = −2c4e
−TEX0

. (529)

Setting c4 → 0, T → ∞ gives

ηt → η∗t , µt → µ∗
t , (530)

where

η̇∗t − ert(η∗t )
2 + 2c1e

−rt = 0, η∞ = 0, (531)

µ̇∗
t − ertη∗t µ

∗
t − 2c1e

−rte−tEX0 − η∗t e
−tEX0 = 0, µ∞ = 0. (532)

Solve the ODE with ansatz η∗t = e−rtξt to get

ξt =
−r +

√
r2 + 8c1
2

, (533)

η∗t = e−rt−r +
√
r2 + 8c1
2

. (534)

Plug η∗ into the ODE of µ∗ to yield

µ∗
t = −

(2c1 +
−r+

√
r2+8c1
2 )EX0

r + 1 + −r+
√
r2+8c1
2

e−(r+1)t. (535)

As a result, the equilibrium strategy is given by

α̂(t, x) = −ert(η∗t x+ µ∗
t ) = −−r +

√
r2 + 8c1
2

x+
(2c1 +

−r+
√
r2+8c1
2 )EX0

r + 1 + −r+
√
r2+8c1
2

e−t. (536)

Remark. This is the general case where the equilibrium strategy is time-inhomogeneous. As a remark,

∂µH(µ)(x′) = 2c1(µ− x)− y, (537)

so that Ẽ
(
∂µH(t, X̃t,L (Xt) , Ỹt, Z̃t, α̂(t, X̃t,L (Xt) , Ỹt, Z̃t))(Xt)

)
= 0 since EYt ≡ 0. This implies that the MFG

and MFC equilibrium still coincide.
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Analytic Approach for MFC

The analytic approach turns the McKean-Vlasov optimal control problem into a normal optimal control problem

where the state variable takes values as measures. In the setting of feedback strategies represented by the feedback

function ϕ, denote µt := L
(
Xϕ

t

)
. Denote µ(t, x) as the density of measure µt, the Fokker-Planck equation holds:

∂tµ(t, x) + divx(b(t, x, µt, ϕ(t, x)) · µ(t, x))−
1

2
Tr(∂xx[σσ

T (t, x, µt, ϕ(t, x)) · µ(t, x)]) = 0. (538)

The objective is to figure out the optimal ϕ to minimize

E

[∫ T

0

f(t,Xt, µt, ϕ(t,Xt)) dt+ g(XT , µT )

]
=

∫ T

0

⟨f(t, ·, µt, ϕ(t, ·)), µt⟩ dt+ ⟨g(·, µT ), µT ⟩ . (539)

The problem becomes a deterministic optimal control problem if we recognize the Fokker-Planck equation as the

state dynamics with state variables as measures. At the cost of having an infinite-dimensional state space, we can

solve the problem through the deterministic version of the Pontryagin maximum principle.

Firstly, introduce the dual variable u : Rd → R of µ ∈ P(Rd). Write down the Hamiltonian

H (t, µ, u, β) :=

〈
u,−divx(b(t, ·, µ, β(·)) · µ) +

1

2
Tr(∂xx[σσ

T (t, ·, µ, β(·)) · µ])
〉
+ ⟨f(t, ·, µ, β(·)), µ⟩ , (540)

where β(·) : Rd → R stands for the feedback function at a certain time.

Remark. When writing down the Hamiltonian in the Pontryagin maximum principle, one neglects the time structure.

That is the reason we are considering the dual variable of µ instead of a flow of measures {µt}. Similarly, β : Rd → R
can be understood as a proxy variable for ϕ(t, ·) given time t. However, as we return to the equations later, one needs

to add back the time structure. It is not hard though since the dual variable of a flow of measures shall be a flow of

functions ut(x) := u(t, x).

By integration by parts,

H (t, µ, u, β) =

〈
b(t, ·, µ, β(·)) · ∂xu(·) +

1

2
Tr[σσT (t, ·, µ, β(·)) · ∂xxu(·)], µ

〉
+ ⟨f(t, ·, µ, β(·)), µ⟩ , (541)

= ⟨K(t, ·, µ, ∂xu(·), ∂xxu(·), β(·)), µ⟩ , (542)

where

K(t, x, µ, y, z, α) := b(t, x, µ, α) · y + 1

2
Tr[σσT (t, x, µ, α) · z] + f(t, x, µ, α) (543)

is the ”normal” HJB Hamiltonian for stochastic control problems. An analogue of the Pontryagin maximum principle
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tells us to first minimize H w.r.t. β. As a result, we calculate the first variation

δH (β)(γ) =

∫
∂αK(t, x, µ, ∂xu(x), ∂xxu(x), β(x)) · γ(x) dµ(x). (544)

Clearly, one shall set the ∂αK term to zero, i.e.,

α∗(t, x, µ, y, z) := inf
α

K(t, x, µ, y, z, α), ∂αK(t, x, µ, y, z, α∗(t, x, µ, y, z)) = 0, (545)

which is the minimizer of the ”normal” Hamiltonian. We hope that

∀(t, x, µ), ∂αK(t, x, µ, ∂xu(x), ∂xxu(x), β
∗(t, µ, u)) = 0. (546)

This can be guaranteed by setting

β∗(t, µ, u)(·) = α∗(t, ·, µ, ∂xu(·), ∂xxu(·)), (547)

as the optimal β. With such a β∗ plugged into H ,

H ∗(t, µ, u) := inf
β

H (t, µ, u, β) = H (t, µ, u, β∗(t, µ, u)). (548)

If we can solve for u and plug back into α∗, we get the MFC equilibrium strategy.

In order to solve for u, we put up the adjoint equation, which requires the state derivative of the Hamiltonian.

As a result, we calculate the first variation at measure µ:

δH (t, µ, u, β)(ν) = ⟨b(t, ·, µ, β(·)) · ∂xu(·), ν⟩+
∫ 〈

δb

δµ
(t, x, µ, β(x))(·), ν

〉
∂xu(x) dµ(x) (549)

+

〈
1

2
Tr[σσT (t, ·, µ, β(·)) · ∂xxu(·)], ν

〉
+

1

2
Tr

∫ 〈
δ(σσT )

δµ
(t, x, µ, β(x))(·), ν

〉
∂xxu(x) dµ(x) (550)

+ ⟨f(t, ·, µ, β(·)), ν⟩+
∫ 〈

δf

δµ
(t, x, µ, β(x))(·), ν

〉
dµ(x). (551)

This implies the following functional derivative

δH

δµ
(t, µ, u, β)(z) = b(t, z, µ, β(z)) · ∂xu(z) +

∫
δb

δµ
(t, x, µ, β(x))(z) · ∂xu(x) dµ(x) (552)

+
1

2
Tr[σσT (t, z, µ, β(z)) · ∂xxu(z)] +

1

2
Tr

∫
δ(σσT )

δµ
(t, x, µ, β(x))(z) · ∂xxu(x) dµ(x) (553)

+ f(t, z, µ, β(z)) +

∫
δf

δµ
(t, x, µ, β(x))(z) dµ(x). (554)

Notice that z is the variable in the linear functional derivative δH
δµ (t, µ, u, β), which is essentially a function. At this
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point, we write down the adjoint equation and recover the time structure with dual variable ut(x) := u(t, x) that

∂tu(t, x) = −δH

δµ
(t, µt, ut, β

∗(t, µt, ut))(x). (555)

The terminal condition of the adjoint equation is

u(T, x) =
δ ⟨g(·, µ), µ⟩

δµ
(µT )(x) = g(x, µT ) +

∫
δg

δµ
(y, µT )(x) dµT (y). (556)

At this point, the PDE for u and the PDE for µ together characterizes the solution of the MFC problem. We rewrite

those two PDEs and merge them:

0 = ∂tu(t, x) +K(t, x, µt, ∂xu(t, x), ∂xxu(t, x), β
∗(t, µt, ut)(x)) +

∫
δK
δµ [t, z, µt, ∂xu(t, z), ∂xxu(t, z), β

∗(t, µt, ut)(z)](x) · µ(t, z) dz

u(T, x) = g(x, µT ) +
∫

δg
δµ (y, µT )(x) · µ(T, y) dy

0 = ∂tµ(t, x) + divx(b(t, x, µt, β
∗(t, µt, ut)(x)) · µ(t, x))− 1

2Tr(∂xx[σσ
T (t, x, µt, β

∗(t, µt, ut)(x)) · µ(t, x)])

µ0 = ρ

.

(557)

which concludes the analytic approach to MFC. It consists of one forward and one backward PDE. Notice that z is

an integration variable, which matches with the Ẽ term in the probabilistic approach of MFC and is interpreted as

the change caused by the measure component.

Remark. u is NOT the value function so the backward PDE shall NOT be understood as the HJB equation. It is

actually an analogue to the adjoint equation, so u corresponds to ”Y ” in stochastic control (the state derivative of

value function, i.e., u(t, x) = δv
δµ (t, µt)(x) along the optimal {µt} for value function v defined later). The master

equation of MFC, on the other hand, is an analogue to the HJB equation.
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Example: MFC Analytic Approach

Consider the LQ example. On finite time horizon [0, T ], the state dynamics:

dXt = αt dt+ σ dWt, EX0 = 0, (558)

the running cost and terminal cost:

f(x, α, µ) =
1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2, g(x, µ) = c4(x− µ)2. (559)

Write down the ”normal” Hamiltonian

K(t, x, µ, y, z, α) = αy +
σ2

2
z +

1

2
α2 + c1(x− µ)2 + c2x

2 + c3µ
2, (560)

and calculate

α∗(t, x, µ, y, z) = −y. (561)

This implies

β∗(t, µ, u)(·) = −∂xu(·). (562)

To set up the PDEs,

δK

δµ
(t, x, µ, y, z, α)(v) = 2c1(µ− x)v + 2c3µv, (563)∫
δK

δµ
(t, z, µt, ∂xu(t, z), ∂xxu(t, z), β

∗(t, µt, ut)(z))(x) · µ(t, z) dz (564)

=

∫
[2c1x(µt − z) + 2c3xµt] · µ(t, z) dz = 2c3xµt. (565)

We get the PDEs

0 = ∂tu(t, x)− 1
2 (∂xu(t, x))

2 + σ2

2 ∂xxu(t, x) + c1(x− µt)
2 + c2x

2 + c3µ
2
t + 2c3xµt

u(T, x) = c4(x− µT )
2

0 = ∂tµ(t, x)− ∂x(∂xu(t, x) · µ(t, x))− σ2

2 ∂xxµ(t, x)

µ0 = ρ

. (566)

Considering the generalized Feynman-Kac correspondenceYt := ∂xu(t, χt)

Zt := σ∂xxu(t, χt)
, (567)
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the forward PDE is equivalent to dχt = −Yt dt + σ dWt with µ(t, ·) = L (χt). The backward PDE has terminal

condition YT = 2c4(χT − EχT ), and by Ito formula (assuming enough regularity),

dYt = ∂xtu(t, χt) dt+ ∂xxu(t, χt) dχt +
σ2

2
∂xxxu(t, χt) dt. (568)

Differentiating w.r.t. x on both sides of the backward PDE yields

0 = ∂xtu− ∂xu · ∂xxu+
σ2

2
∂xxxu+ 2c1(x− µt) + 2c2x+ 2c3µt. (569)

Combining both equations yields

dYt =

[
∂xu · ∂xxu(t, χt)−

σ2

2
∂xxxu(t, χt)− 2c1(χt − Eχt)− 2c2χt − 2c3Eχt

]
dt (570)

+ ∂xxu(t, χt) dχt +
σ2

2
∂xxxu(t, χt) dt (571)

=

[
1

σ
YtZt − 2c1(χt − Eχt)− 2c2χt − 2c3Eχt

]
dt+ ∂xxu(t, χt) dχt (572)

= [−2(c1 + c2)χt + 2(c1 − c3)Eχt] dt+ Zt dWt. (573)

This MKV-FBSDE system is exactly the same as the one derived by the probabilistic approach! As a result, we

check that the analytic approach and the probabilistic approach provide the same set of equations.

Remark. If we admit the correspondence u(t, x) = δv
δµ (t, µt)(x) along the optimal {µt} for value function v, then

Yt = ∂x
δv

δµ
(t, µt)(χt) = ∂µv(t, µt, χt) (574)

corresponds to the L-derivative of the value function. One shall distinguish the interpretation of ”Y” in the Pontryagin

maximum principle under stochastic control problems (state derivative of value function) and MFC problems (L-

derivative of value function).
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Value Function and Master Equation for MFC

Since the state variable in MFC is a measure µ, the value function is defined as

v(t, µ) := inf
ϕ

{∫ T

t

⟨f(s, ·, µs, ϕ(s, ·)), µs⟩ ds+ ⟨g(·, µT ), µT ⟩

}
, (575)

where {µs}s∈[t,T ] is a flow of measures generated by the Fokker-Planck equation

∂tµ+ divx(b(s, x, µs, ϕ(s, x)) · µ)−
1

2
Tr(∂xx[σσ

T (s, x, µs, ϕ(s, x)) · µ]) = 0, (576)

with a given initial condition µt = µ. Notice that {µs} depends on ϕ, so the inf w.r.t. ϕ also hits the µ components.

As an analogue to the HJB equation in stochastic control,

∂tv(t, µ) + H ∗
(
t, µ,

δv

δµ
(t, µ)

)
= 0, (577)

with a given terminal condition v(T, µ) = ⟨g(·, µ), µ⟩. Recall that H ∗ is the HJB Hamiltonian H with β∗ plugged

in , and the dual variable u is set as the linear functional derivative δv
δµ as an analogue to the infinitesimal generator

in the control case (where the correspondence is provided by y = ∂xv). At this point, it is expected that the

correspondence

u(t, x) =
δv

δµ
(t, µt)(x) (578)

holds at MFC equilibrium (when {µt} is optimal). Differentiating both sides provides the correspondence:

∂xu(t, x) = ∂µv(t, µt)(x), (579)

where ∂µ is the L-derivative.

Now that we extract the decoupling field u to define the master field

U(t, x, µ) :=
δv

δµ
(t, µ)(x). (580)

Differentiating both sides of the HJB equation w.r.t. µ yields the master equation:

∂tU(t, x, µ) +
δH ∗ (t, µ, U(t, ·, µ))

δµ
(x) = 0, (581)

with a given terminal condition

U(T, x, µ) = g(x, µ) +

∫
δg

δµ
(z, µ)(x) dµ(z). (582)
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Remark. One shall first evaluate H ∗ and then take the linear functional derivative, as shown in the derivation

of the master equation. Besides, master equations have various forms according to various correspondence. The

master equation referred to above identifies the master field as the linear functional derivative of the value function

(an analogue to the generalized Feynman-Kac formulation for HJB equation in stochastic control).

On the other hand, one can also identify a master field that corresponds to the L-derivative of the value function:

U (t, x, µ) := ∂µv(t, µ)(x). (583)

The correspondence to ”Y” and ”Z” is provided as

Yt = U (t,Xt,L (Xt)), Zt = ∂xU (t,Xt,L (Xt))σ(t,Xt,L (Xt)). (584)

where the (X,Y, Z) satisfies the MKV-FBSDE stated in the probabilistic approach of MFC and the volatility is

uncontrolled.

Remark. Notice that U is R-valued while U is Rd-valued. As a result, ∂xU (t,Xt,L (Xt)) is Rd×d-valued and

∂xxU (t,Xt,L (Xt)) is Rd×d×d-valued.

Use Ito-Krylov’s formula and plug in the dynamics of X to get

dYt = ∂tU (t,Xt,L (Xt)) dt+ ∂xU (t,Xt,L (Xt))bt dt+
1

2
∂xxU (t,Xt,L (Xt))σtσ

T
t dt (585)

+

[∫
∂µU (t,Xt,L (Xt))(z)bt(z) dL (Xt) (z) +

1

2

∫
∂z∂µU (t,Xt,L (Xt))(z)σtσ

T
t (z) dL (Xt) (z)

]
dt (586)

+ ∂xU (t,Xt,L (Xt))σt dWt, (587)

where

bt := b(t,Xt,L (Xt) , α̂t), σt := b(t,Xt,L (Xt)). (588)

Recall that α̂(t, x, µ, y, z) is the minimizer of the ”normal” Pontryagin Hamiltonian H w.r.t. α. Here α̂ appears in

bt since the forward SDE for X in the MKV-FBSDE system requires the plug-in of α̂.

Let me clarify here that: (i): ∂z denotes the differential w.r.t. the space variable z of the L-derivative ∂µU(µ)(z).

(ii): we can write bt = bt(Xt) so that x 7→ bt(x) denotes all the dependence bt has on Xt. bt(z) is nothing more but

the same functional relationship renaming the variable as z. In this sense, by introducing (X̃, Ỹ , Z̃) as an independent

copy of (X,Y, Z), whose expectation is denoted as Ẽ, and b̃t := b(X̃t), σ̃t := σ(X̃t), the Ito expansion has a compact

representation:

dYt = ∂tU (t,Xt,L (Xt)) dt+ ∂xU (t,Xt,L (Xt))bt dt+
1

2
∂xxU (t,Xt,L (Xt))σtσ

T
t dt (589)

+ Ẽ[∂µU (t,Xt,L (Xt))(X̃t)b̃t] dt+
1

2
Ẽ[∂z∂µU (t,Xt,L (Xt))(X̃t)σ̃tσ̃

T
t ] dt+ Zt dWt. (590)
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Comparing this expansion with the BSDE in the MKV-FBSDE system yields

∂tU (t,Xt,L (Xt)) + ∂xU (t,Xt,L (Xt))bt +
1

2
∂xxU (t,Xt,L (Xt))σtσ

T
t

+ Ẽ[∂µU (t,Xt,L (Xt))(X̃t)b̃t] +
1

2
Ẽ[∂z∂µU (t,Xt,L (Xt))(X̃t)σ̃tσ̃

T
t ]

=

− ∂xH(t,Xt,L (Xt) , Yt, Zt, α̂(t,Xt,L (Xt) , Yt, Zt))

− Ẽ
(
∂µH(t, X̃t,L (Xt) , Ỹt, Z̃t, α̂(t, X̃t,L (Xt) , Ỹt, Z̃t))(Xt)

)
. (591)

This equation can be written as a PDE w.r.t. U only that:

∂tU (t, x, µ)+∂xU (t, x, µ) ·b(t, x, µ, α̂[t, x, µ,U (t, x, µ), ∂xU (t, x, µ)σ(t, x, µ)])+
1

2
∂xxU (t, x, µ)σ(t, x, µ)σT (t, x, µ)

+

∫
∂µU (t, x, µ)(x′) · b(t, x′, µ, α̂[t, x′, µ,U (t, x′, µ), ∂xU (t, x′, µ)σ(t, x′, µ)]) dµ(x′)

+
1

2

∫
∂z∂µU (t, x, µ)(x′)σ(t, x′, µ)σT (t, x′, µ) dµ(x′)

+ ∂xH(t, x, µ,U (t, x, µ), ∂xU (t, x, µ)σ(t, x, µ), α̂[t, x, µ,U (t, x, µ), ∂xU (t, x, µ)σ(t, x, µ)])

+

∫
∂µH(t, x′, µ,U (t, x′, µ), ∂xU (t, x′, µ)σ(t, x′, µ), α̂[t, x′, µ,U (t, x′, µ), ∂xU (t, x′, µ)σ(t, x′, µ)])(x) dµ(x′)

= 0. (592)

This is the master equation explicitly written w.r.t. U .
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