
Hidden Markov Model

Haosheng Zhou

August 2022

HMM notes written by Haosheng Zhou

Hidden Markov Model

Since HMM is a very important topic in the field of applied statistics, we provide a complete and rigorous

introduction here to some most important problems and algorithms about HMM.

Basic Settings

Assume that we have a finite-time time-homogeneous Markov Chain X1, ..., XT with initial distribution π and

the transition matrix AN×N . Each random variable Xi takes value in the finite state space S = {s1, ..., sN} and we

adopt the convention that Aij = P (Xk+1 = sj |Xk = si). Unfortunately, the realizations of these Xi are hidden and

can never be observed.

Instead, we can observe the emissions of these hidden random variables, i.e. Y1, ..., YT , taking values in the finite

set V = {v1, ..., vM}. Here the connections between Xi and Yj are characterized by the emission matrix BN×M with

Bij = P (Yk = vj |Xk = si) and the assumption that P (Yk = vj |Xk = si) does not depend on k. In other words, the

i-th row of B is a discrete probability distribution that can be seen as a fixed machine installed inside state si with

this distribution, each time Xk arrives at state si at time k and hopes to generate an emission, it starts this machine

to decide which element in V to draw as the value of Yk. The crucial point here is that we assume the generation

of Yk to depend directly only on Xk and different Y1, ..., YT are generated independently. (NOTE: this does not

mean that Yk is independent of X1, ..., Xk−1, Xk+1, ..., XT but means that conditional on Xk they are independent,

i.e. such dependency holds by going through Xk.

To give the entire setting for an HMM, it’s not hard to figure out that in order to fix the distribution of the

Markov chain Xi, an initial distribution π is needed together with the transition matrix A and the finite state space

S. For the emission part, emission matrix B and the set of all emission values V are required. As a result, the HMM

can be determined by a tuple (S, V, π,A,B), where λ = (π,A,B) is called the parameter of such HMM.

For simplicity, xi appears in the expression of probability as an abbreviation of the event {Xi = xi}, yi as an

abbreviation of the event {Yi = yi}, P (sj |si) as an abbreviation of P (Xk+1 = sj |Xk = si) = Aij , P (vj |si) as an

abbreviation of P (Yk = vj |Xk = si) = Bij , and Bj(yk) as an abbreviation of P (Yk = yk|Xk = sj) if not particularly

specified.

The main assumptions of HMM are restated here as: (i): Markov property of process Xi, P (Xi|X1, ..., Xi−1) =

P (Xi|Xi−1), i.e. given the present state, past and future are independent. (ii): Emission independence of Yi, i.e.

P (Yi|X1, ..., XT , Y1, ..., Yi−1, Yi+1, ..., YT) = P (Yi|Xi), i.e. given Xi, Yi is independent of anything else. Assume that

the emissions are observed until time T < ∞, different kinds of questions can be asked about the HMM.

Likelihood

Likelihood computation happens when we know all about an HMM, i.e. the parameter λ is known, and also

observe an emission sequence y1, ..., yT ∈ V . The goal is to compute how likely it is for us to observe this certain

emission sequence.

1

HMM notes written by Haosheng Zhou

Assume that the underlying hidden state sequence is x1, ..., xT ∈ S and apply the law of total probability:

P (y1, ..., yT) =
∑

(x1,...,xT)

P (x1, ..., xT)P (y1, ..., yT |x1, ..., xT) (1)

=
∑

(x1,...,xT)

P (x1, ..., xT)P (yT |x1, ..., xT , y1, ..., yT−1)P (y1, ..., yT−1|x1, ..., xT) (2)

=
∑

(x1,...,xT)

P (x1, ..., xT)P (yT |xT)P (y1, ..., yT−1|x1, ..., xT) (3)

= · · · (4)

=
∑

(x1,...,xT)

P (x1, ..., xT)P (yT |xT) ...P (y1|x1) (5)

=
∑

(x1,...,xT)

π(x1)P (x2|x1) ...P (xT |xT−1)P (yT |xT) ...P (y1|x1) (6)

However, these formulas have little practical values, since we would have to consider all possible values taken

by (x1, ..., xT), N
T possibilities. For each possible value, the product has to be computed, so likelihood computation

takes overall time O(TNT).

By noticing that there are actually a lot of repeated calculations happening, we can store the calculated partial

results for repeated future use. This provides us with a dynamic programming (DP) scheme for likelihood calculations.

D[t, j]
def
= P (Xt = sj , y1, ..., yt), i.e. the probability of being in the j-th state at time t and seeing all t emissions

so far. Apply the law of total probability w.r.t. the state at the previous time:

P (Xt = sj , y1, ..., yt) (7)

=

N∑
i=1

P (Xt−1 = si)P (Xt = sj , y1, ..., yt|Xt−1 = si) (8)

=

N∑
i=1

D[t− 1, i]

P (y1, ..., yt−1|Xt−1 = si)
P (yt|Xt = sj , Xt−1 = si, y1, ..., yt−1)P (Xt = sj , y1, ..., yt−1|Xt−1 = si) (9)

=

N∑
i=1

D[t− 1, i]P (yt|Xt = sj)P (Xt = sj |y1, ..., yt−1, Xt−1 = si) (10)

=

N∑
i=1

D[t− 1, i]P (yt|Xt = sj)P (Xt = sj |Xt−1 = si) (11)

(12)

Note that here P (Xt = sj |Xt−1 = si, y1, ..., yt−1) = P (Xt = sj |Xt−1 = si) since yt−1 is fixed conditional on

Xt−1 = si and X is Markov. In the expression above, we see the self-repeated structure with the third term on the

right to be the entry in the transition matrix A and the second term on the right to be the entry in the emission

matrix B. The complete recurrence relationship goes like:

2

HMM notes written by Haosheng Zhou

D[t, j] =

N∑
i=1

D[t− 1, i]Bj(yt)Aij (13)

D[1, j] = πjBj(y1) (14)

gives the rule for dynamic programming. This is known as the forward algorithm for computing likelihood for

emission sequences.

After the whole matrix D is updated, our final likelihood should be

P (y1, ..., yT) (15)

=

N∑
i=1

P (XT = si, y1, ..., yT) (16)

=

N∑
i=1

D[T, i] (17)

This DP reduces the time complexity to O(TN2), efficient and feasible.

Decoding

The second task for HMM that appears frequently is the decoding task, i.e. given the parameter λ of the HMM

and an emission sequence y1, ..., yT , we would like to derive a state sequence x1, ..., xT such that it’s the most likely

sequence of hidden states to appear.

This problem is not so easy as it seems to be. One might want to say: why don’t we just take xi to be the

hidden state such that yi is the most likely to be generated since we know the full structure of the emission sequence.

Such approach is incorrect because it ignores the transition matrix. Doing so may cause the problem that the state

sequence x1, ..., xT generated is very unlikely to appear (for example, state x1 may even have no probability transiting

to state x2).

Another more reasonable and intuitive approach would be: first compute the best value for x1, i.e. the state

such that y1 is the most likely to appear. Afterwards, compute the best value for x2 by taking the estimate of x1

and the value of y2 into consideration at the same time. In detail, choose x2 such that

x∗
2 = argmaxx2

P (x2, y2|x1) (18)

= argmaxx2P (y2|x1, x2)P (x2|x1) (19)

= argmaxx2P (y2|x2)P (x2|x1) (20)

Such algorithm adopts the greedy strategy but falls in the pit of being too short-sighted. The error in the

estimation of the most possible past hidden states accumulates and will still give incorrect results.

The Viterbi algorithm is then developed to fully solve this problem. Greedy strategy is still adopted, but in

3

HMM notes written by Haosheng Zhou

a more subtle way such that short-sighted strategy can give globally optimal result. Our goal is to maximize the

likelihood of the observed emissions together with the underlying hidden states. In other words, we hope to do the

following optimization:

x∗
1, ..., x

∗
T = argmaxx1,...,xT

P (x1, ..., xT , y1, ..., yT) (21)

= argmaxx1,...,xT
π(x1)P (x2|x1) ...P (xT |xT−1)P (yT |xT) ...P (y1|x1) (22)

REMARK: it’s important to distinguish P (x1, ..., xT , y1, ..., yT), P (y1, ..., yT), P (y1, ..., yT |x1, ..., xT) and to

understand why the first probability is selected as the objective function for optimization here. Since the underlying

hidden states are unknown, P (y1, ..., yT |x1, ..., xT) should not be a reasonable objective function (optimizing this

probability just gives the first incorrect algorithm we discussed at the beginning of this decoding section, completely

ignoring the effects of the transition matrix). Since we are hoping to derive the best xi sequence but not the best

yi sequence, P (y1, ..., yT) is also not a reasonable choice. On the other hand, P (x1, ..., xT , y1, ..., yT) is a good choice

because it not only considers the connection within xi transitions but also considers the emissions from xi to yi.

Directly solving out this optimization problem is not at all realistic. As a result, DP is constructed once more.

The trick here is to tear the maximum into two maximums w.r.t. the value of the state in the previous time.

V [t, j]
def
= max

x1,...,xt−1

P (x1, ..., xt−1, y1, ..., yt, Xt = sj) (23)

= max
x1,...,xt−2

max
i=1,...,N

P (x1, ..., xt−2, y1, ..., yt, Xt−1 = si, Xt = sj) (24)

= max
x1,...,xt−2

max
i=1,...,N

P (yt|Xt = sj)P (x1, ..., xt−2, y1, ..., yt−1, Xt−1 = si, Xt = sj) (25)

= max
x1,...,xt−2

max
i=1,...,N

P (yt|Xt = sj)P (Xt = sj |Xt−1 = si)P (x1, ..., xt−2, y1, ..., yt−1, Xt−1 = si) (26)

= max
i=1,...,N

Bj(yt)Aij max
x1,...,xt−2

P (x1, ..., xt−2, y1, ..., yt−1, Xt−1 = si) (27)

= max
i=1,...,N

Bj(yt)AijV [t− 1, i] (28)

For the boundary conditions, it’s pretty clear that:

V [1, j] = πjBj(y1) (29)

And the maximum possible likelihood of such a state sequence is:

max
x1,...,xT

P (x1, ..., xT , y1, ..., yT) (30)

= max
x1,...,xT−1

max
j=1,2,...,N

P (x1, ..., xT−1, y1, ..., yT , XT = sj) (31)

= max
j=1,2,...,N

V [T, j] (32)

As a result, after updating all entries of V , look through the part in V corresponding to time T and search

4

HMM notes written by Haosheng Zhou

for the largest number, such number is just maxx1,...,xT
P (x1, ..., xT , y1, ..., yT), i.e. the largest possible likelihood

achieved among all state sequences for the given emission sequence.

To get the Viterbi path, i.e. the best state sequence x1, ..., xT , save a backtracing pointer when doing this DP.

In each step computing V [t, j] = maxi=1,...,N Bj(yt)AijV [t−1, i], figure out which i attains the maximum and record

it in a backtracing matrix. Such i indicates that the best possible step to take in order to arrive at V [t, j] is from

V [t− 1, i], i.e. from state si at previous time. By following the entries in the backtracing matrix, we should manage

to construct the Viterbi path. The time complexity is O(TN2).

Learning Parameters

For parameter learning, the setting changes. Now we have many observations of emission sequences as the

output of an HMM, but we do not know λ. So we want to find a way to estimate the best π,A,B that match this

HMM’s outputs. The learning step is the most difficult problem, but also the most important step to practically

build an HMM for decoding purposes.

Before talking about the classical Baum-Welch algorithm that solves the learning problem, let us introduce

some probabilities that we will make use of in the following context. Assume for simplicity that only one single

emission sequence y1, ..., yT is observed. The first quantity is called the forward probability:

αt(j)
def
= P (Xt = sj , y1, ..., yt|λ) (33)

αt(j) =

N∑
i=1

αt−1(i)AijBj(yt) (34)

α1(j) = πjBj(y1) (35)

This is exactly what have already been introduced in the section of likelihood. A DP is constructed with forward

probabilities to compute the likelihood of an emission sequence. The forward probability has its name for the reason

that it looks at the event that we get to the j-th state at time t from a forward perspective, i.e. also knowing all the

history of emissions.

NOTE: In the likelihood section, the probability is not conditioned on λ since at that time we assume λ to be

known.

A slightly different version is the backward probability.

βt(j)
def
= P (yt+1, ..., yT |Xt = sj , λ) (36)

5

HMM notes written by Haosheng Zhou

To get the recurrence relationship similar to what we’ve got for forward probability:

βt(j) = P (yt+1, ..., yT |Xt = sj , λ) (37)

=

N∑
i=1

P (Xt+1 = si|Xt = sj , λ)P (yt+1, ..., yT |Xt = sj , Xt+1 = si, λ) (38)

=

N∑
i=1

P (Xt+1 = si|Xt = sj , λ)P (yt+1|yt+2, ..., yT , Xt = sj , Xt+1 = si, λ) (39)

P (yt+2, ..., yT |Xt = sj , Xt+1 = si, λ) (40)

=

N∑
i=1

AjiP (yt+1|Xt+1 = si, λ)P (yt+2, ..., yT |Xt+1 = si, λ) (41)

=

N∑
i=1

AjiBi(yt+1)βt+1(i) (42)

The boundary case here is a little bit special:

βT (j) = 1 (43)

When the value of XT is known, the value of YT is then fixed with no randomness.

The forward and backward probabilities are two sides of a same coin and can both be used to construct DP for

likelihood computation. The forward algorithm introduced in the previous section makes use of forward probability,

but it’s also easy to write out the backward algorithm that makes use of backward probability to compute the

likelihood. The only difference is that forward probability considers all history appearing while backward probability

considers all futures appearing.

Now we are all set with the tools necessary for the BW algorithm, let’s then state the main thought of this

algorithm. Think in a heuristic way: empirically, what would one do in order to build up λ = (π,A,B) based on a

single observed emission sequence? An easy answer would be to use empirical frequency in the sample as a substitute

for the probability. For example, if we want to estimate πj , we just divide the number of emission sequences starting

with state sj by the number of all emission sequences. If we want to estimate Aij , we just divide the number of

appearances of state transitions from si to sj by the number of appearances of all state transitions from si to any

other state. If we want to estimate Bjk, we just divide the number of appearances of state sj emitting vk by the

overall number of appearances of state sj .

You may not believe that we are already done! The Baum-Welch algorithm does exactly these things to find

out the optimal parameter λ for an HMM. From the heuristic point of view, BW is an extremely intuitive algorithm!

Baum-Welch (BW)

Let’s dive in to the details of BW. First consider the simplified version, where there is only one observed

emission sequence y1, ..., yT .

6

HMM notes written by Haosheng Zhou

Consider the estimation of Aij , the transition probability from si to sj . As we have just stated above, empirically,

this is just the number of appearances of state transitions from si to sj divided by the number of appearances of

state transitions from si to any other state. However, we would face the following difficulties: (i): we only have

one sample, so computing such ratio as an estimate always results in large bias (ii): more importantly, the states

are hidden so we do not know the exact underlying state sequence, i.e. it’s actually totally impossible to do what

we’ve said above (NOTE: here we definitely can’t use Viterbi to do the decoding since Viterbi requires knowing all

parameters λ of the HMM). Despite the fact that we can’t compute such ratio directly, we know the expectation of

these hidden counts based on the emission sequence observed, a good substitute.

Let’s try to figure out the expression for the expectation of C, the number of appearance s of state transitions

from si to sj given the emission sequence y1, ..., yT . Denote I for indicator function:

C = IX1=si,X2=sj |λ,y1,...,yT
+ ...+ IXT−1=si,XT=sj |λ,y1,...,yT

(44)

EC = P (X1 = si, X2 = sj |λ, y1, ..., yT) + ...+ P (XT−1 = si, XT = sj |λ, y1, ..., yT) (45)

Here the reader might have such a question: why and how are we conditioning on λ? This question is quite

natural since we actually don’t know the true λ and want to estimate it by the learning process. However, note

that the distribution of all random variables are known if and only if λ is given, so we have to add this λ to the

condition. Doesn’t this contradict our goal to find the true parameters of the HMM? Actually there’s a subtle way

to circumvent this problem by using the iterative methods. The iterative methods work if we first provide a prior

estimate for λ (if there’s no prior knowledge, such prior estimate can also be randomly generated) and then update

λ by the information contained in the sample. By adopting such method, EC can absolutely be computed base on

an old estimation of λ. The only concern now is to find a way to calculate the following probability:

ξt(i, j)
def
= P (Xt = si, Xt+1 = sj |y1, ..., yT , λ) (46)

EC =

T−1∑
t=1

ξt(i, j) (47)

7

HMM notes written by Haosheng Zhou

By applying the Bayes rule for the conditional probability measure P (·|λ), ξ can be computed using A,B, α, β:

ξt(i, j) = P (Xt = si, Xt+1 = sj |y1, ..., yT , λ) (48)

∝ P (Xt = si, Xt+1 = sj |λ)P (y1, ..., yT |Xt = si, Xt+1 = sj , λ) (49)

=
P (Xt = si, Xt+1 = sj |λ)
P (Xt = si|Xt+1 = sj , λ)

P (y1, ..., yT , Xt = si|Xt+1 = sj , λ) (50)

=
P (Xt = si, Xt+1 = sj |λ)
P (Xt = si|Xt+1 = sj , λ)

P (yt+1|y1, ..., yt, yt+2, ..., yT , Xt = si, Xt+1 = sj , λ) (51)

P (y1, ..., yt, yt+2, ..., yT , Xt = si|Xt+1 = sj , λ) (52)

=
P (Xt = si, Xt+1 = sj |λ)
P (Xt = si|Xt+1 = sj , λ)

P (yt+1|Xt+1 = sj , λ)P (y1, ..., yt, Xt = si|Xt+1 = sj , λ) (53)

P (yt+2, ..., yT |Xt+1 = sj , λ) (54)

= Bj(yt+1)βt+1(j)
P (y1, ..., yt, Xt = si|Xt+1 = sj , λ)P (Xt = si, Xt+1 = sj |λ)

P (Xt = si|Xt+1 = sj , λ)
(55)

= Bj(yt+1)βt+1(j)P (y1, ..., yt, Xt = si, Xt+1 = sj |λ) (56)

= Bj(yt+1)βt+1(j)P (Xt+1 = sj |y1, ..., yt, Xt = si, λ)P (y1, ..., yt, Xt = si|λ) (57)

= Bj(yt+1)βt+1(j)P (Xt+1 = sj |Xt = si, λ)P (y1, ..., yt, Xt = si|λ) (58)

= Bj(yt+1)βt+1(j)Aijαt(i) (59)

Note that
∑N

i,j=1 ξt(i, j) = 1, the normalization constant is computed to get:

ξt(i, j) =
Bj(yt+1)βt+1(j)Aijαt(i)∑N

i,j=1 Bj(yt+1)βt+1(j)Aijαt(i)
(60)

Now we are half way to success, the computations afterwards can all be based on such ξt(i, j).

As stated above, the expectation of D, the number of appearances of state transitions from si to any other state

given the emission sequence y1, ..., yT , is also of our concern. In a similar sense:

D = IX1=si|y1,...,yT ,λ + ...+ IXT−1=si|y1,...,yT ,λ (61)

ED = P (X1 = si|y1, ..., yT , λ) + ...+ P (XT−1 = si|y1, ..., yT , λ) (62)

As a result, only consider:

γt(i)
def
= P (Xt = si|y1, ..., yT , λ) (63)

ED =

T−1∑
t=1

γt(i) (64)

8

HMM notes written by Haosheng Zhou

Luckily, we don’t have to do these annoying computations once more since:

γt(i) = P (Xt = si|y1, ..., yT , λ) (65)

=

N∑
j=1

P (Xt = si, Xt+1 = sj |y1, ..., yT , λ) (66)

=

N∑
j=1

ξt(i, j) (67)

By knowing all values of ξ, γ is also known. Actually, ξ is the only probability we have to calculate, since the

events it considers are already the finest possible events that would ever be needed (NOTE: the explanation for this

point is in the next section).

Return to the update of Aij , we immediately conclude that by replacing the unknown empirical counts of state

transitions with the expectation of those empirical counts of state transitions, the updated Aij is:

Aij =
EC
ED

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(68)

The π works as the initial distribution of hidden states, empirically, πj should be the count of emission sequences

where sj is the initial state over the count of all emission sequences. Replace these two quantities by their respective

expectations, we get the updated πj :

πj = γ1(j) (69)

The B works as the emission matrix, empirically, Bjk should be the count of states that emit vk over the count

of all states. Replace these two quantities by their respective expectations, we get the updated Bjk:

Bjk =

∑T
t=1 γt(j)Iyt=vk∑T

t=1 γt(j)
(70)

Now that we have finished stating the BW algorithm for a single observed emission sequence. The following

Alg. 1 provides the whole procedure.

The extension of BW algorithm to the case where we have multiple observed emission sequences is rather simple.

Assume that there are R emission sequences denoted (y11 , y
1
2 , ..., y

1
T), ..., (y

R
1 , y

R
2 , ..., y

R
T), here subscripts stand for time

and superscripts stand for the sample index, e.g. yrt stands for the value of emission at time t in the r-th sample

emission sequence. It’s natural that each sample provides us with information on the behavior of those parameters.

The general Baum-Welch algorithm is provided in Alg. 2. Actually, the structure is barely the same as that in Alg.

1, with the only difference to be that for each sample, the probabilities are computed. When updating parameters,

replace the numerator and denominator with the sample average of all R updates we would get as if we are running

Alg. 1 for each single observed emission sequence. In brief, the difference only lies in: (i): compute probabilities for

each sequence (ii): take the average of those expressions in Alg. 1 as the best update.

9

HMM notes written by Haosheng Zhou

Algorithm 1 Baum-Welch for a single observed emission sequence

Input: y1, ..., yT as the observed emission sequence
Output: Estimated parameters π,A,B of HMM, π the initial distribution of hidden states, A the transition matrix,

B the emission matrix
1: Set prior estimates for π,A,B
2: while not converge do
3: {Compute Forward Probability}
4: α1(j) = πjBj(y1)

5: αt(j) =
∑N

i=1 αt−1(i)AijBj(yt)
6:

7: {Compute Backward Probability}
8: βT (j) = 1

9: βt(j) =
∑N

i=1 βt+1(i)AjiBi(yt+1)
10:

11: {Compute ξt(i, j)}
12: ξt(i, j) =

Bj(yt+1)βt+1(j)Aijαt(i)∑N
i,j=1 Bj(yt+1)βt+1(j)Aijαt(i)

13:

14: {Compute γt(i)}
15: γt(i) =

∑N
j=1 ξt(i, j)

16:

17: {Update the estimates for π,A,B}
18: πj = γ1(j)

19: Aij =
∑T−1

t=1 ξt(i,j)∑T−1
t=1 γt(i)

20: Bjk =
∑T

t=1 γt(j)Iyt=vk∑T
t=1 γt(j)

21: end while

10

HMM notes written by Haosheng Zhou

Algorithm 2 Baum-Welch for multiple observed emission sequence

Input: (y11 , y
1
2 , ..., y

1
T), ..., (y

R
1 , y

R
2 , ..., y

R
T) as R observed emission sequences

Output: Estimated parameters π,A,B of HMM, π the initial distribution of hidden states, A the transition matrix,
B the emission matrix

1: Set prior estimates for π,A,B
2: while not converge do
3: for r=1,...,R do
4: {Compute Forward Probability}
5: αr

1(j) = πjBj(y
r
1)

6: αr
t (j) =

∑N
i=1 α

r
t−1(i)AijBj(y

r
t)

7:

8: {Compute Backward Probability}
9: βr

T (j) = 1

10: βr
t (j) =

∑N
i=1 β

r
t+1(i)AjiBi(y

r
t+1)

11:

12: {Compute ξrt (i, j)}
13: ξrt (i, j) =

Bj(y
r
t+1)β

r
t+1(j)Aijα

r
t (i)∑N

i,j=1 Bj(yr
t+1)β

r
t+1(j)Aijαr

t (i)

14:

15: {Compute γt(i)}
16: γr

t (i) =
∑N

j=1 ξ
r
t (i, j)

17: end for
18:

19: {Update the estimates for π,A,B}
20: πj =

1
R

∑R
r=1 γ

r
1(j)

21: Aij =
∑R

r=1

∑T−1
t=1 ξrt (i,j)∑R

r=1

∑T−1
t=1 γr

t (i)

22: Bjk =
∑R

r=1

∑T
t=1 γr

t (j)Iyr
t =vk∑R

r=1

∑T
t=1 γr

t (j)

23: end while

11

HMM notes written by Haosheng Zhou

For the time being, we should be familiar with all details of the general Baum-Welch algorithm. However,

only heuristic motivations are described in this section and nothing rigorous in mathematics for this algorithm has

appeared so far. The following questions may arise: why is such update strategy the best? In what sense is such

strategy the best? The next section would give us the answers by viewing BW as a special case of the EM algorithm.

Baum-Welch as a case of EM

We want to argue that the BW algorithm is the application of the expectation maximization scheme. First recall

that EM scheme assumes the knowledge on an old estimate of π̂, Â, B̂ and hopes to find a new estimate π,A,B that

maximizes the expectation of log-likelihood. Assume we have λ̂ = (π̂, Â, B̂) as the knowledge on the parameters we

already have, i.e. an old estimate for the parameters, and λ∗ = (π∗, A∗, B∗) to be the best update under EM scheme.

First consider the single-sample case, where we are given a single emission sequence y1, ..., yT . By EM:

λ∗ = argmaxλE[log p(x1, ..., xT , λ|y1, ..., yT)|y1, ..., yT , λ̂] (71)

NOTE: we are conditioning on x1, ..., xT having the distribution fixed by y1, ..., yT and the old estimate λ̂. Here p

stands for density/probability mass function. Write x as an abbreviation of x1, ..., xT and y as an abbreviation of

y1, ..., yT . Some standard calculations for EM tell us:

λ∗ = argmaxλ[log p(λ) +

∫
log p(x, y|λ) · p(x|y, λ̂) dx] (72)

Here, assume that we have no knowledge on the prior of these parameters by taking p(λ) as constant, i.e. the

flat prior. NOTE: When one is solving problems in a specific field, it’s natural to set non-trivial priors. Since only

the argmax matters, the log p(λ) term disappears:

λ∗ = argmaxλ

∫
log p(x, y|λ) · p(x|y, λ̂) dx (73)

Everything until now is standard in EM scheme. Now plug in the probability mass functions. p(x, y|λ) is the

joint probability mass of states and emissions conditional on knowing the parameters. Luckily, it has been computed

before:

p(x1, ..., xT , y1, ..., yT |λ) = π(x1)P (x2|x1, λ) ...P (xT |xT−1, λ)P (yT |xT , λ) ...P (y1|x1, λ) (74)

Now for the term p(x|y, λ̂), it’s the probability mass of the hidden states given the emission sequence and the

old estimates of parameters. It seems hard to deal with, so we may keep this term for now to see whether where are

other ways to deal with this later.

12

HMM notes written by Haosheng Zhou

λ∗ = argmaxλ

∑
(x1,...,xT)

[log π(x1) + logP (x2|x1, λ) + ...+ logP (xT |xT−1, λ) + logP (yT |xT , λ) + ...+ logP (y1|x1, λ)] · p(x|y, λ̂)

(75)

Let’s apply a standard trick in EM, to change (x1, ..., xT) into (sl1 , ..., slT) to indicate their values, with l1, ..., lT

taking values in the set [N] = {1, ..., N}.

λ∗ = argmaxλ

∑
l1,...,lT∈[N]

[log πl1 + logAl1l2 + ...+ logAlT−1lT + logBlT (yT) + ...+ logBl1(y1)] (76)

P
(
X1 = sl1 , ..., XT = slT |y1, ..., yT , λ̂

)
(77)

From the expression above, we know that for the sum w.r.t. log π and logB, only the value li matters, and for the

sum w.r.t. logA, only the value of the tuple (li−1, li) matters. The terms in the sum are now having a public factor

P
(
X1 = sl1 , ..., XT = slT |y1, ..., yT , λ̂

)
. Why don’t we decompose this sum w.r.t. the values of log π, logA, logB

since they are the terms that contain the variables of our concern.

λ∗ = argmaxλ

N∑
i=1

∑
(l1,...,lT),l1=i

log πi · P
(
X1 = si, X2 = sl2 , ..., XT = slT |y, λ̂

)
(78)

+

N∑
i,j=1

∑
(l1,...,lT),(l1,l2)=(i,j)

logAij · P
(
X1 = si, X2 = sj , X3 = sl3 ..., XT = slT |y, λ̂

)
(79)

+ ... (80)

+

N∑
i,j=1

∑
(l1,...,lT),(lT−1,lT)=(i,j)

logAij · P
(
X1 = sl1 , ..., XT−2 = slT−2

, XT−1 = si, XT = sj |y, λ̂
)

(81)

+

N∑
i=1

∑
(l1,...,lT),l1=i

logBi(y1) · P
(
X1 = si, X2 = sl2 , ..., XT = slT |y, λ̂

)
(82)

+ ... (83)

+

N∑
i=1

∑
(l1,...,lT),lT=i

logBi(yT) · P
(
X1 = sl1 , ..., XT−1 = slT−1

, XT = si|y, λ̂
)

(84)

After combining the same values of the log terms in the original expression, we get:

13

HMM notes written by Haosheng Zhou

λ∗ = argmaxλ

N∑
i=1

log πi

∑
l2,...,lT

P
(
X1 = si, X2 = sl2 , ..., XT = slT |y, λ̂

)
(85)

+

N∑
i,j=1

logAij

∑
l3,...,lT

P
(
X1 = si, X2 = sj , X3 = sl3 ..., XT = slT |y, λ̂

)
(86)

+ ... (87)

+

N∑
i,j=1

logAij

∑
l1,...,lT−2

P
(
X1 = sl1 , ..., XT−2 = slT−2

, XT−1 = si, XT = sj |y, λ̂
)

(88)

+

N∑
i=1

logBi(y1)
∑

l2,...,lT

P
(
X1 = si, X2 = sl2 , ..., XT = slT |y, λ̂

)
(89)

+ ... (90)

+

N∑
i=1

logBi(yT)
∑

l1,...,lT−1

P
(
X1 = sl1 , ..., XT−1 = slT−1

, XT = si|y, λ̂
)

(91)

The expression seems to be a mess, but actually we are very close to success if we simplify the sum w.r.t li:

λ∗ = argmaxλ

N∑
i=1

log πiP
(
X1 = si|y, λ̂

)
+

N∑
i,j=1

logAijP
(
X1 = si, X2 = sj |y, λ̂

)
(92)

+ ... (93)

+

N∑
i,j=1

logAijP
(
XT−1 = si, XT = sj |y, λ̂

)
+

N∑
i=1

logBi(y1)P
(
X1 = si|y, λ̂

)
(94)

+ ... (95)

+

N∑
i=1

logBi(yT)P
(
XT = si|y, λ̂

)
(96)

I am definitely sure that you have seen these terms before because they are just the probability γ and ξ. That’s

exciting! Note: in Alg. 1 and 2, the probability γ and ξ are both computed using old estimates λ̂, so the notations

are consistent, in the following context, by default, ξ, γ are all computed using old estimate λ̂.

14

HMM notes written by Haosheng Zhou

λ∗ = argmaxλ

N∑
i=1

log πiγ1(i) +

N∑
i,j=1

logAijξ1(i, j) + ...+

N∑
i,j=1

logAijξT−1(i, j) (97)

+

N∑
i=1

logBi(y1)γ1(i) + ...+

N∑
i=1

logBi(yT)γT (i) (98)

After getting such an expression, it’s then a trivial optimization problem w.r.t. all πj , Aij , Bjk. Note the natural

constraints on these parameters that:

N∑
j=1

πj = 1 (99)

∀i ∈ [N],

N∑
j=1

Aij = 1 (100)

∀j ∈ [N],

M∑
k=1

Bjk = 1 (101)

Apply the Lagrange multiplier method for constrained optimization problems, the update formulas derived are

the same as those in Alg. 1, proving that BW is essentially a special case of the EM scheme. Let us compute the

update formulas below ony for πi and the readers are welcome to compute those for A,B as exercise. Q is the

Lagrange functional for the whole problem and µπ, µA, µB are Lagrange multipliers. There’s an abuse of notations

below for simplicity, 1⃗ stands for a column vector with all entries to be 1 of an appropriate size:

Q(π,A,B, µπ, µA, µB) =

N∑
i=1

log πiγ1(i) +

N∑
i,j=1

logAijξ1(i, j) + ...+

N∑
i,j=1

logAijξT−1(i, j) (102)

+

N∑
i=1

logBi(y1)γ1(i) + ...+

N∑
i=1

logBi(yT)γT (i) (103)

+ µπ

(
N∑
i=1

πi − 1

)
+ µT

A(A1⃗− 1⃗) + µT
B(B1⃗− 1⃗) (104)

15

HMM notes written by Haosheng Zhou

Extract the part relevant to π:

q(π, µπ) =

N∑
i=1

log πiγ1(i) + µπ

(
N∑
i=1

πi − 1

)
(105)

∂q

∂πi
=

γ1(i)

πi
+ µπ (106)

∂q

∂µπ
=

N∑
i=1

πi − 1 (107)

Some calculations tell us that:

πj =
γ1(j)∑N
i=1 γ1(i)

(108)

N∑
i=1

γ1(i) =

N∑
i=1

P
(
X1 = si|y1, ..., yT , λ̂

)
= 1 (109)

giving us exactly the same update formula as that in Alg. 1.

Of course, Alg. 2 can also be derived by EM in exactly the same way we have proved for the single emission

sequence case above. The proof won’t be presented here and the readers are welcome to take it as an exercise.

(Just follow all the steps above and replace y1, ..., yT with (y11 , y
1
2 , ..., y

1
T), ..., (y

R
1 , y

R
2 , ..., y

R
T), you will see that the

numerator and denominator in Alg. 2 appear with a structure of average as a natural correspondence to the structure

of expectation.)

16

