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Abstract

In this paper, we consider the minimum dominating set problem (MDS) and the minimum 3-path vertex cover

problem (VCP3) on unit disk graphs (UDG). Based on shifting strategy, together with the application of data

structures and geometric properties of unit disk graphs, we manage to propose PTAS and approximation algorithms

for those two classical problems in graph theory.

Our contributions mainly lie in the usage of data structures for lowering time complexity and the generalization

of shifting strategy for a wider class of problems with its natural extensions in designing PTAS.
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Introduction

Unit Disk Graph (UDG)

In the whole paper, we restrict ourselves to the Euclidean plane R2. If a graph satisfies the property that for any

two vertices p, q ∈ R2, there exists an edge between p and q if and only if ||pq|| ≤ 1 (||pq|| stands for the Euclidean

distance between p and q), the undirected graph is called a unit disk graph. UDG, as a special case of geometric

intersection graph, can be understood as the intersection graph of circles centered at all vertices with radius 1. It’s

obvious that by knowing the coordinates of all vertices, the distances between any pair of vertices are known, thus

fixing the structure of a UDG generated by these vertices. V is always used as the vertex set of a UDG in the

following context.

Why would we restrict ourselves to discussions on UDG? It has already been theoretically proved that PTAS for

MDS and VCP3 do not exist on general graphs. That’s the exact reason graphs with special but simple structures

like UDG are becoming the focus of such research.

Minimum Dominating Set Problem (MDS)

If ∃S ⊂ V , such that ∀v ∈ V − S, ∃s ∈ S such that there’s an edge between v and s, then S is called a

dominating set of a graph. Naturally, the minimum dominating set refers to the dominating set with the least

number of vertices in the unweighted case. For the weighted version, an non-negative weight is assigned to each

vertex as a weight function w : V → R+ and ”minimum” then refers to the sum of weights being minimal. In the

following context, it’s always assumed that UDG is weighted. This includes the unweighted version as a special

case where w ≡ 1. It’s a well-known fact that MDS on general graphs, alike maximum independent set problem, is

NP-hard. Despite the toughness, MDS plays a crucial role in graph coloring problems and human network analysis

etc., making it necessary to provide efficient approximation algorithms.

3-Path Vertex Cover Problem (VCP3) andMaximum Dissociation Set Problem (MDISS)

VCP3 is a direct generalization of the minimum vertex cover problem. If ∃S ⊂ V such that for the edge set

E and ∀e ∈ E, edge e always has one of its endpoints in S, then S is called a vertex cover of the graph. VCP3

considers all paths containing 3 different vertices in the graph in a more general sense. If ∃S ⊂ V such that for

any path P ⊂ V in the graph containing 3 different vertices, P ∩ S ̸= ∅, then S is called a 3-path vertex cover.

Similar to the description in MDS, the minimum vertex cover and minimum 3-path vertex cover can be defined as

the minimum with respect to sum of weights.

A standard technique in graph theory is to consider the dual of minimum vertex cover problem, turning it into

the maximum independent set problem. If ∃S ⊂ V such that any two vertices in S has no edge connecting them,

then S is called an independent set. If S is the minimal vertex cover, then V − S is the maximum independent

set. The similar technique can be applied to VCP3, turning it into the dual problem called maximum dissociation

set problem. The definition of a dissociation set S is that S ⊂ V and ∆(G[S]) ≤ 1, i.e. the maximum degree in

the induced subgraph of S cannot be larger than 1. It’s not hard to find that VCP3 and MDISS are dual problems

3



Bachelor Thesis of Haosheng Zhou Peking University

of each other.

Here let us introduce another concept closely related to the minimum vertex cover and maximum independent

set, called minimal vertex cover and maximal independent set. A minimal vertex cover S should first be a

vertex cover, and satisfies the condition that there exists no vertex cover S′ ⊂ V such that S′ ⊂ S, i.e. any subset of

a minimal vertex cover can’t be a vertex cover except itself. Similarly is maximal independent set defined, i.e. any set

containing the maximal independent set except itself can’t be an independent set. Intuitively, a minimal vertex cover

should be expected to be close to a minimum vertex cover, but it’s actually not the case! Simple counterexamples

can be built in graph theory showing that a minimal vertex cover can be much greater than a minimum vertex set!

As a result, it’s especially important to distinguish the two word ”minimal” and ”minimum”.

Unfortunately, it has been proved that both VCP3 and MDISS are NP-hard. However, despite the fact that

VCP3 is a relaxation of the minimum vertex cover problem, the optimum of VCP3 enjoys less sum of weights. As a

result, VCP3 enables us to lower the costs under the condition that the overall coverage maintains at a high level.

VCP3 exhibits its practical value in road monitoring and the encryption of wireless sensor networks. To sum up, an

effective polynomial-time approximation algorithm for VCP3 is necessary and valuable.

Prior Work

There exists a lot of fundamental works on the structure of UDG. It’s known that judging whether a certain

graph is a UDG is NP-hard, while the maximum independent set and maximum cut problem on UDG are also proved

to be NP-hard [3, 7]. Although UDG is a special case in the family of geometric intersection graph, its structure still

has its complexity in the field of algorithm and is worth looking into.

On the side of the algorithmic research conducted on UDG, a pile of rewarding research emerges in recent years.

Leeuwen defines two concepts: ”thickness” and ”density” of UDG. From the perspective of ”thickness”, UDG is

viewed under its restriction in a strip while for its ”density”, UDG is viewed after embedded into square grids [19].

These two concepts can work as prototypes of the general shifting strategy [8] on UDG we have made frequent use

of in this paper. Da Fonseca et al. gives approximation algorithms for MDS on UDG, one with ratio 43
9 and time

complexity O(n2m)1, another with ratio 44
9 and time complexity O(n log n) and the other with ratio 44

9 and time

complexity O(n+m) [4]. These works are breakthroughs toward the least approximation ratio 5 at that time. Cabello

et al. focus on the minimum spanning tree and minimum cut problem on UDG, asserting exact algorithms with time

complexity O(n log n) and O(n2 log3 n) respectively [2]. Bonnet et al. look into the QPTAS and sub-exponential

algorithms for the maximum clique problem on UDG, designing an algorithm with time complexity 2Õ(n
3
2 ) [1].

Marathe et al. start from the perspective of heuristic algorithms and study general optimizations problems on UDG

to provide an approximation algorithm for the minimum vertex cover problem with ratio 3
2 and for the minimum

vertex coloring problem with ratio 3. The works are further generalized onto more general disk graphs [11]. Das et

al. make use of data structures to put up an O(n log3 n) algorithm with ratio 2.16 and an O(n2 log2 n) algorithm

with ratio 2 for the maximum independent set problem on UDG [5]. Nieberg et al. provides an O(n
1
ε log 1

ε ) PTAS for

MDS on UDG [12] while Wang et al. research the weighted case for MDS and give a PTAS for graphs with bounded

1In this paragraph, n denotes the number of vertices and m denotes the number of edges in the graph.
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increments and certain degree restrictions, the time complexity is O(np 1
ε log 1

ε ), with p to be the parameter for the

bounded increment property [21].

On the other hand, works on VCP3 and more general VCPk problems2 on special graphs. Xiao et al. consider

the parameterized VCP3 problem3 and give a kernel of 5k vertices, together with an O∗(1.7485k) algorithm [22].

Kardos et al. look into MDISS on general graphs, providing an exact algorithm of time complexity O∗(1.5171n). In

the meantime, they also a randomized polynomial-time approximation algorithm for VCP3 on general graphs with

the expectation of the ratio as 23
11 [9]. Tsur et al. consider the parametric version of this problem, decrease the time

complexity to O∗(1.713k) [14]. Tu et al. conclude that the maximum number of MSS in a tree with n vertices is

always O(3
n
3 ) [17] and also provide O(n) approximation algorithms for VCP3 on cubic graphs with ratio 1.57 [16],

also an O(n(n+m)) approximation algorithm for VCP3 in general graphs with ratio 2 [18]. For the PTAS of VCP3,

Tu et al. give one that works on planar graphs with time complexity O(27⌈
1
ε ⌉ 1

εn) [15]. Wang et al. provide an

O(n
1
ε2 ) PTAS for c-local problems on UDG with minimum degree 2 [20]. Liu et al. give an O(nO(k4(6k)k 1

ε2
)) PTAS

for connected kPVC problem on UDG [10].

Our Work

Our main work is first to make use of the divide-and-conquer method, giving an approximation algorithm giving

minimal dominating sets of UDG. Geometric properties of UDG are the introduced to make slight modifications,

providing us with an O(nO( 1
ε )) PTAS for MDS on UDG.

Secondly, VCP3 problem, after being transformed into equivalent MDISS problem, fits in well with the shifting

strategy. We first give an approximation algorithm with performance ratio 2 and time complexity O(n4 log2 n) for

the weighted case. Afterwards, strip splicing techniques are stated and thus providing us an easy access to the PTAS

for VCP3 on UDG.

2VCPk is a further generalization of VCP3 that will not be discussed in this paper.
3The parameterized VCP3 problem asks if a graph has VCP3 of size at most k.
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Data Structure and Shifting Strategy

Data Structure

Here we refer to [5] for the construction of data structures. For the completeness of this paper, lemmas are listed

below while details are omitted.

Let P be a set of n vertices in R2 and R be a query range. An emptiness inquiry is defined as a judgement

of whether P ∩R = ∅. The query returns any one of the vertices in P ∩R if the intersection is not empty. Similarly,

a maximum query is defined, with the only difference that now each vertex has a non-negative real number as its

weight and the maximum query returns the vertex in P ∩R with the largest weight. An anti-disk query is defined

as the query among vertices that are outside the given disk, i.e. setting R as the exterior of the disk. Furthermore,

an n-anti-disk query is defined by setting R as the union of the exterior of n given disks. Similar definitions hold

for in-disk query and n-in-disk query.

It turns out that a maximum query can be reduced to an emptiness query in the following way:

Lemma 1 ([5]). For set P with n weighted vertices as elements and a given query range R, if there exists a data

structure to do emptiness query taking up space S(n) = Ω(n), with preprocessing time B(n) = Ω(n) and query time

Q(n), then there exists a data structure to do maximum query on the same R, taking up O(S(n) log n) space, with

preprocessing time O(B(n) log n) and query time O(Q(n) log n).

To construct a specific data structure for anti-disk emptiness query, we depend on the following lemma:

Lemma 2 ([5]). For set P with n weighted vertices as elements, there exists a data structure to do anti-disk emptiness

query, taking up space O(n), with preprocessing time O(n log n) and query time O(log n).

Lemma 3 ([5]). For set P with n weighted vertices as elements, there exists a data structure to do in-disk emptiness

query, taking up space O(n), with preprocessing time O(n log n) and query time O(log n).

Lemma 4 ([5]). For set P with n weighted vertices as elements, there exists a data structure to do 2-anti-disk

emptiness query, taking up space O(n), with preprocessing time O(n log n) and query time O(log n).

Although details are not provided here, the lemmas 2, 3, 4 above all make use of the Voronoi graph and the

trapezoidal mapping in their constructions. The one in lemma 2 makes use of the Voronoi graph with order n − 1,

which is just the farthest-point Voronoi graph, while the one in lemma 3 makes use of the Voronoi graph with order

1 and the one in lemma 4 makes use of the Voronoi graph with order n− 2. That explains why the time and space

complexity of these data structures are the same.

Remark. In the following context, we state lemmas and theorems only for anti-disk query, but actually these also

hold for in-disk and 2-anti-disk query.

Combining lemma 1 and 2 to get:

Lemma 5 ([5]). For set P with n weighted vertices as elements, there exists a data structure to do anti-disk maximum

query, taking up space O(n log n), with preprocessing time O(n log2 n) and query time O(log2 n).
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Under certain conditions, the query time in lemma5 can be further reduced with careful considerations:

Lemma 6 ([5]). For set P with n weighted vertices as elements, with all weights as natural numbers taking values in

{1, 2, ..., n}, there exists a data structure to do anti-disk maximum query, taking up space O(n), with preprocessing

time O(n log n) and query time O((wmax − wret) log n). Here wmax stands for the maximum weight in the data

structure and wret stands for the returned weight value of the query. In particular, if no points are returned, set

wret = 0.

From Overmars and Leeuwen’s work [13], the following lemma changes the static data structure into a semi-

dynamic one.

Lemma 7 ([13]). If a data structure storing n vertices solves a separable problem, taking up S(n) space, with

preprocessing time B(n) and query time Q(n), then there exists a semi-dynamic data structure solving the same

problem that supports insertion of elements taking up space O (S(n) + log n), with insertion time O
(

B(n) logn
n

)
and

query time O(Q(n) log n).

Combining lemma 7 with lemma 5 and 6 to get:

Lemma 8 ([5]). For set P with n weighted vertices as elements, there exists a semi-dynamic data structure for anti-

disk maximum query that. supports insertions of elements, taking up space O(n log n), with insertion time O(log3 n)

and query time O(log3 n).

Lemma 9 ([5]). For set P with n weighted vertices as elements, and the weights are all natural numbers taking values

in {1, 2, ..., n}, there exists a semi-dynamic data structure for anti-disk maximum query that. supports insertions of

elements, taking up space O(n), with insertion time O(log2 n) and query time O((wmax − wret) log
2 n).

Shifting Strategy

The shifting strategy [8] is the most crucial technique we have used in this paper. This technique enables us to

start from exact algorithms in small regions and end up with approximation algorithms in large regions. Leeuwen

has provided a proof on this [19], but for the sake of the completeness of this paper, we give the proof here once

more for a slightly modified version.

Firstly, let us clarify the concept of a strip. Given r, h ∈ R, a strip starting from r with width h refers to

the unbounded planar area R × [r, r + h]. As a result, if not clarified, a strip is by default a horizontal strip, and

any square or rectangle region we mention in a later context has its edges parallel to the coordinate axes. The way

shifting strategy is actually conducted is described in the proof of the theorem below.

Theorem 1 ([19]). If there exists a strip with width h ∈ N and there exists an exact algorithm solving MDS/VCP3

within the strip with time complexity T (m) for UDG with m vertices, then there exists an approximation algorithm

solving MDS/VCP3 for UDG with n vertices of any locations. It has ratio 1+ 1
h and time complexity O(T (n)+n log n).

Proof. Here we restrict ourselves to MDS. The case for VCP3 can be similarly proved.
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There always exists a large enough rectangle such that all vertices of UDG are in the interior of this rectangle.

By applying the shifting strategy, this rectangle will be partitioned into strips and exact algorithms are conducted

within each strip, after which the strips are shifted in order to give a lower bound on the approximation ratio.

To be specific, for each k ∈ {1, 2, ..., h}, we choose the first strip to be of width k starting from the lower edge

of this rectangle, leaving out a blank strip of width 1 on its upper side. Then the second strip with width h is fixed.

After leaving out a blank strip of width 1 on the upper side of the second strip, choose the third strip with width h,

etc.. By doing this, we get one partition of the rectangle called Sk. It’s then obvious that we would have S1, ..., Sh

as h different partitions depending on the width of the first strip. The name ”shifting” comes directly from the

structure that the change of the width of the first strip works as a shift for all other strips in a certain partition. We

refer to the following Fig. 1 for further explanations.

Figure 1: A plot for shifting strategy on UDG

The red strips are the ones within which exact algorithms run (for this plot h is taken as 5) and the blank strips are of width
1. For presentation purpose, the strips are drawn to be bounded, but actually they are horizontal unbounded strips that can

extend to infinity by going left or right.
Here the only difference is the width of the first red strip, with partition Si having the first red strip of width i. As can be

seen from the plot, the overall structure is being shifted up for 1 unit as i changes.

It’s natural that when the partition Si is fixed, the exact algorithm A is applied on each single strip within Si

to get the MDS of each strip. The union of all strips’ MDS vertices are then taken to get A(Si) as an approximation

of the MDS on the whole UDG. Since we have h different partitions, this step gives us R1, ..., Rh as h different
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approximations for the MDS of the whole UDG. It’s natural that we then take the one with the minimum size R as

the result of the whole approximation algorithm S(A) that works on the whole UDG. By the process described:

|R| = min {|R1|, ..., |Rh|} (1)

|Ri| =
∑
J∈Si

|OPTJ | (2)

where the sum is conducted for all strips J within the partition Si and OPTJ stands for the locally optimal MDS

we get by running the exact algorithm A on strip J . Let OPT denote the actual MDS for the whole UDG and

OPT (i) denote the set of vertices in OPT that can dominate some vertices in neighboring strips simultaneously

under partition Si.

By the geometric structure of UDG, since we have a width 1 gap between any two neighboring strips, OPT (i) (i =

1, 2, ..., h) are mutually disjoint. ∑
J∈Si

|OPTJ | ≤ |OPT |+ |OPT (i)| (3)

h∑
i=1

(|OPT |+ |OPT (i)|) ≤ (1 + h)|OPT | (4)

(5)

It’s then easy to see that:

min
i

∑
J∈Si

|OPTJ | ≤
1

h

h∑
i=1

∑
J∈Si

|OPTJ | ≤ (1 +
1

h
)|OPT | (6)

9
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PTAS and Approximation Algorithms for MDS Problem

An Approximation Algorithm for MDS

We restrict ourselves to the unweighted case for the MDS problem. This approximation algorithm gives a

minimal dominating set, but not necessarily minimum. As have been stated, the size of a dominating set can

have very large difference from the true minimum dominating set, so this approximation algorithm does not have a

bounded ratio. Nevertheless, it provides us with inspirations for the PTAS we are going to present in a later context.

The main thought here is the two-layer shifting strategy, as it’s named, applying shifting strategy mentioned

in Theorem 1 both vertically and horizontally. By doing this, the problem is turned into finding an efficient exact

algorithm in the k × k square area for MDS. To start the construction, we refer to the following lemmas concerning

geometric properties of UDG.

Lemma 10 ([6]). Assume pa, pb, pc, pd are four vertices within a strip of width 1 and x(pa) < x(pb) < x(pc) < x(pd).

Then if {pa, pb, pc} and {pb, pc, pd} are two sets such that any two vertices in the set are mutually independent, then

||papd|| > 1.

Lemma 11 ([6]). Let nk be the maximum number of mutually disjoint unit disks (their interiors have no intersection)

that intersect with a given vertical line l whose centers are inside the strip with width k >> 1. Then nk ≤ 7
3k + 2.

It’s easy to verify that the following lemma holds:

Lemma 12. Let n′
k be the maximum number of mutually disjoint disks of radius 1

2 that intersect with a given vertical

line l whose centers are inside the strip with width k >> 1. Then n′
k = O(k).

Let’s then consider a k × k square region S, with k to be a fixed constant that is large enough. Now a vertical

line lv pass through S to separate S as two parts with the same area. Similarly, a horizontal line lh pass through

S to separate S as two parts with same area. Denote S(lv, lh) as the set of points whose distance to either lv or

lh is not larger than 1
2 , denote S(lv) as the set of points whose distance to lv is not larger than 1

2 , similarly define

S(lh). S − S(lv, lh) should be the union of four disjoint square region S1, S2, ..., S4. Refer to Fig. 2 for further

explanations. Set Vi = V ∩ Si as the set of vertices in region Si. By applying the divide-and-conquer method, the

following approximation algorithm is given.

Note that firstly, the shortest possible distance between two vertices in different regions chosen from S1, S2, ..., S4

can’t be less than 1, so it’s clear that by construction Ai must be the dominating set of Vi. Then, since S(lv), S(lh)

are both 1×k rectangles, Lemma 10 tells us how the ”if” conditions in Alg. 1 come from. Last but not least, the size

of the true MDS in the region S(lv, lh) has at most a difference of 2n′
k from the size of R derived in Alg. 1. This is

because if there are n′
k vertices v1, v2, ..., vn′

k
as the output of Alg. 1 that are still not enough to dominate all vertices,

assume there’s a vertex v that has still not been dominated, then consider the disks centered at v1, v2, ..., vn′
k
, v with

radius 1
2 , they must be mutually disjoint but all has intersection with lv, which is a contradiction to lemma 12!

So far we have proved that the approximation we get from Alg. 1 is a minimal dominating set. However, it’s a

pity that we can’t get a bound on the performance ratio.
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Figure 2: A plot for the construction with divide-and-conquer strategy

The two red lines separate the whole square into two parts with same area. The blue area is the corridor, and all vertices in
the corridor form the set S(lv, lh). Remaining are 4 smaller square regions, with any two smaller regions being independent
of each other by construction. That enables us to proceed on smaller regions, turning large problems into smaller ones.

Theorem 2. Given n vertices of an unweighted UDG, there exists an approximation algorithm Alg. 1 for MDS in

time O(n log n).

Proof. The calculation of time complexity requires us to denote T (n, k) as the time taken for this algorithm to run

in the case of a UDG with n vertices restricted in a k × k square region.

Note that the time-consuming step is actually the sorting step and it’s assumed that k is a given constant. We

get:

T (n, k) ≤ 4T

(
n,

k

2

)
+O(n log n) (7)

T (n, k) = O(k2n log n) = O(n log n) (8)

11
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Algorithm 1 Approximation Algorithm for MDS Problem

Input: The set P of m vertices p1, p2, ..., pm inside a k × k square region
Output: An approximation to the MDS on the restriction of UDG in this region as a subset of P
1: Apply the algorithm recursively to V1, V2, ..., V4 to get their respective approximation of MDS denoted Ai

2: Denote all vertices dominated by Ai as Di

3: Eliminate all dominated vertices to get V ′ = V −
⋃4

i=1 Di

4: R = ∅
5: Set Vh = V ′ ∩ S(lh) and sort the vertices in Vh by their x-coordinates in ascending order
6: for v ∈ Vh do
7: if v is independent of the latest two points before it in R then
8: R = R ∪ {v}
9: end if

10: end for
11: Set Vv = V ′ ∩ S(lv) and sort the vertices in Vv by their y-coordinates in ascending order
12: for v ∈ Vv do
13: if v is independent of the latest two points before it in R then
14: R = R ∪ {v}
15: end if
16: end for
17: return

⋃4
i=1 Ai ∪R

A PTAS for MDS

The inspiration of the PTAS directly comes from Alg. 1. The reason of the failure to have control on the

performance ratio in Alg. 1 is that we are applying the approximation algorithm recursively, so error accumulates.

Instead, if we do exact searches in each small square region Si to ensure that we are getting the exact MDS, we

should be able to get a bound of the ratio. Luckily, this won’t take exponential time since Lemma 12 is always on

our side.

To be specific, when we are dealing with the domination of the vertices in the region S(lv, lh), we search through

all of its subsets with size no larger than 2n′
k. After determining such a subset, we derive the MDS of the Si

respectively. The matter of change here is just the order of operations. By first determining the MDS of all vertices

in the ”corridor” and then considering the remaining vertices inside square region Si, we can ensure that we are

deriving the exact MDS. Refer to Alg. 2 for detailed steps.

We immediately conclude that:

Theorem 3. Given n vertices of an unweighted UDG, there exists an approximation algorithm Alg. 2 for MDS.

This gives a PTAS of MDS with performance ratio 1 + ε in time O
(
nO( 1

ε )
)
.

Proof. Apply the double shifting strategy with strip width k ∈ N as described above to partition the region into

k × k square regions. By Thm. 1, such double shifting strategy gives a ratio
(
1 + 1

k

)2
.

12
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Algorithm 2 Exact MDS in Square Region

Input: The set P of m vertices p1, p2, ..., pm inside a k × k square region
Output: An exact MDS as a subset of P
1: for all A ⊂ S(lv, lh) and |A| ≤ 2n′

k do
2: D denotes all vertices dominated by A
3: V ′ = V −D
4: V ′

i = V ′ ∩ V (i = 1, 2, 3, 4)
5: Apply the algorithm recursively for each Vi to get their MDSs respectively, denoted Di

6: Count the number of points in
⋃4

i=1 Di ∪D
7: end for
8: return The solution with the minimum size

Use the same notations as in Thm. 2 to compute time complexity. By Lemma 12:

T (n, k) ≤ 4T

(
n,

k

2

)
n2n′

k (9)

T (n.k) = nO(k) (10)

Setting 1 + ε =
(
1 + 1

k

)2
gives the conclusion.

13
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Approximation Algorithms and PTAS for VCP3

Approximation Algorithm for VCP3

By applying shifting strategy, the problem is transformed to the design of an exact algorithm for VCP3 within

a strip. Note that by duality, VCP3 is equivalent to MDISS, with the transformation between costs time O(n). In

the following context, we focus on the exact algorithm for MDISS on UDG within a strip.

In the following paragraphs, an approximation algorithm for VCP3 with ratio 2 is provided. Note that although

this algorithm costs more time than those Tu et al. provide for general graphs, shifting strategy also holds for

MDISS, meaning that by adopting our strategy, an approximation algorithm for MDISS with ratio 1 − 1
h can be

derived simultaneously with the same time complexity. Our strategy is to use strips H with width 1, let P denote

the vertex set of the UDG with n vertices and pi for the i-th vertex in P . The UDG of our consideration now is

weighted.

We refer to the following lemmas:

Lemma 13 ([11]). Define the left neighborhood of a vertex p as {q ∈ P | ||pq|| ≤ 1, x(q) ≤ x(p)}. Then within H, a

strip with width 1, for any p ∈ P , there are at most 3 mutually independent vertices in p’s left neighborhood.

By the definition of a dissociation set, each vertex in a dissociation set appears in one of two forms: (i): it’s

independent of any other vertices in the dissociation set (ii): there exists a unique vertex in the dissociation set such

that there’s and edge between these two vertices. This tells us that for each vertex in a dissociation set, it either

appears independently or appears as a pair with another vertex. As a result, two vertices are viewed as a vertex

pair and adding vertices as pairs into the dissociation set is considered. Here EMPTY is introduced as the empty

vertex, independent of any other vertex to simplify our notations. If a vertex pair includes EMPTY , it means that

there’s actually only one vertex in this pair.

Let Pairi denote the vertex pair that includes pi and has pi as the rightest vertex. Let Q = {p1, ..., pm} be

the set of all vertices within the strip with x(p1) ≤ x(p2) ≤ ... ≤ x(pm) to hold. Given 1 ≤ j ≤ i ≤ m such that

||pipj || > 1, define the set Si,j ⊂ Q to be the MDISS with Pairi being the rightest vertex pair and Pairj being

the second rightest vertex pair. For boundary conditions, it’s natural that Si,0 = {pi}. Set Wi,j as the sum of the

weights of all vertices in Si,j . Then we can update all values of Si,j by dynamic programming. Refer to Alg. 3 for

details.

Here let us make some explanations for the variables we use in Alg. 3. D is a 2-dimensional array whose elements

are the data structures we mention in Lemma 5 and 6. Each data structure stores tuples like (j, pj , b, pb,W [i, j]),

whose meaning is that assume the MSS has the last vertex pair Pairi = {pi, pa}, then when the second last vertex

pair Pairj containing pj takes the value {pb, pj}, the separation set has the largest sum of weights W [i, j]. Note that

maximal inquiries are always conducted with respect to W [i, j].

The array S is used to take record of the indices of the former vertex of a certain vertex in the MSS for

backtracing purpose. For a MSS ending with Pairi and having Pairj as the second last vertex pair, S[i][j][0] stands

for the vertex index of the vertex other than pi in the vertex pair Pairi, S[i][j][1] is always set as j, S[i][j][2] stands

for the vertex index of the vertex other than pj in the vertex pair Pairj and S[i][j][3] stands for the vertex index of

the vertex on the right side in the former vertex pair of Pairj .

14
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Algorithm 3 Exact MDISS inside a strip with width 1

Input: The set P of m vertices p1, p2, ..., pm ordered by their x-coordinates in ascending order inside a strip with
width 1

Output: An exact MDISS as a subset of P
1: EMPTY stands for the empty vertex with weight 0, independent of any other vertex
2: D = array[1...m][1...m] as an array of data structures stated in Lemma 5 for the weighted case and Lemma 6

for the unweighted case. Data structures are to do 2-anti-disk maximum query
3: S = array[1...m][0...m][0...3] an array of integers
4: W = array[1...m][0...m] an array of weights
5: max = (1, 0)
6: for i = 1, 2, ...,m do
7: S[i, 0, 0] = S[i, 0, 1] = S[i, 0, 2] = S[i, 0, 3] = 0
8: W [i, 0] = w(pi)
9: if W [i, 0] > W [max] then

10: max = (i, 0)
11: end if
12: end for
13: for i = 2, 3, ...,m do
14: T = ∅
15: for j = 1, 2, ..., i− 1 do
16: if ||pipj || > 1 then
17: Ai is the disk centered at pi with radius 1 and Aj is the disk centered at pj with radius 1
18: submax = (0, 0, 0, 0), result = 0
19: for pa ∈ Ai ∪ {EMPTY } and j < a < i and ||papj || > 1 do
20: for pb ∈ Aj ∪ {EMPTY } and b < j and ||papb|| > 1 and ||papi|| > 1 do
21: B is set as the complement of the union of the disks of radius 1 centered at pa and pi
22: k =2-anti-disk-max-query(D[j, b], B)
23: if result < W [j, k] + w(pa) + w(pi) then
24: result = W [j, k] + w(pa) + w(pi), submax = (a, j, b, k)
25: end if
26: end for
27: end for
28: for temp = 0, ..., 3 do
29: S[i][j][temp] = submax[temp]
30: end for
31: W [i, j] = W [j, k] + w(psubmax[0]) + w(pi)
32: T = T ∪ {(j, pj , b, pb,W [i, j])}
33: if W [i, j] > W [max] then
34: max = (i, j)
35: end if
36: end if
37: end for
38: D[i][a] = preprocess(T )
39: end for
40: (i, j) = max,MDISS = ∅
41: while j ̸= 0 do
42: MDISS = MDISS ∪

{
pi, pS[i][j][0]

}
43: i = j
44: j = S[i][j][3]
45: end while
46: return MDISS − {EMPTY } 15
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Variable max means that the current MSS has pmax as the ending vertices, submax records the (a, j, b, k) that

maximizes result, and result stands for the sum of weights of the MSS ending with pk concatenating Pairi, Pairj

on its right side.

The outer loops of Alg. 3 aims to update subarray S[i][j] while the inner loop we look through any vertex pa

relevant with pi and any vertex pb relevant with pj and pick out the best pa, pb. Note that we have to make sure

that any vertex in Pairi is independent of any vertex in Pairj .

After completing the consideration of all possible outcomes of the MSS that ends with pi, we preprocess the

data structure D[i][a] so that it remains invariant until the end of the algorithm. Starting from row 40 in Alg. 3, we

backtrace all vertices in the MSS and eliminate the empty vertex to get the exact optimal result.

Theorem 4. Given a strip with width 1, and m vertices of UDG, Alg. 3 correctly computes the exact MDISS with

time O(m4 log2 m) and space O(m3 logm). In particular, if we are dealing with the unweighted case, the time is

O(m4 logm) and the space is O(m3).

Proof. Note that we ensure that vertices from Pairi and Pairj are independent and we assume that the vertex pair

on the left hand side of Pairi is Pairk, so vertices in Pairi, Pairj , Pairk are mutually independent. By the lemmas,

the algorithm gives the correct result.

Note that by Lemma 8, we do O(m4) times of inquiries, each with time O(log2 m), and we keep O(m2) data

structures, each with space O(m logm). According to Lemma 9, when it’s the unweighted case, we can reduce both

time and space complexity by a factor of log n.

Combine Thm. 4 with Thm. 1, we get the following theorem.

Theorem 5. Given a set of n weighted vertices of a UDG, there exists an approximation algorithm for VCP3

with ratio 2 and with time O(n4 log2 n), space O(n3 log n). For the unweighted case, the algorithm works with time

O(n4 log n), space O(n3).

Strip Splicing Technique

In this section, we introduce how to build a trade-off between the time complexity and the performance ratio of

the approximation for VCP3. The main thought is to create wider strip by splicing smaller strips. As a result, we

would expect a wider range of geometric properties of UDG to work on wider strips.

We would refer to the following lemma:

Lemma 14 ([5]). pa, pb, pc are three vertices of the UDG inside the strip with width
√
3
2 and x(pa) < x(pb) < x(pc).

If ||papb|| > 1, ||pbpc|| > 1, then ||papc|| > 1.

It can be seen that Lemma 10 and Lemma 14 are both lemmas that state the ”independency” of vertices in the

restriction of UDG to a certain strip. We claim that it is this kind of independency that ensures the efficiency and

good performance of the algorithms. Naturally, we would like to generalize this kind of independency to broader

contexts by asking a question that in a strip with what width can we ensure that if pa, ..., pe are five vertices sorted

16



Bachelor Thesis of Haosheng Zhou Peking University

by their x-coordinates in a strip in ascending order, with pa, ..., pd and pb, ..., pe being two sets such that any two

vertices selected from the set are mutually independent, then pa, pe are independent.

The following lemma answers this question.

Lemma 15. If pa, ..., pe are five vertices such that x(pa) < ... < x(pe) in a strip with width
√
3, now that pa, ..., pd

are mutually independent and pb, ..., pe are mutually independent, then pa, pe are independent.

Proof. Partition the strip H with width
√
3 into two strips each with width

√
3
2 , the upper one is denoted as H1 and

the lower one as H2. They are separated by a line l.

Without loss of generality, assume pa ∈ H1 and we discuss the locations of the other four vertices.

(i): If pe ∈ H1

If at least one of pb, pc, pd are in H1, by Lemma 14, proved.

If pb, pc, pd ∈ H2, then

x(pd)− x(pb) ≥ 1 (11)

||pape|| ≥ x(pe)− x(pa) (12)

x(pe)− x(pa) ≥ x(pd)− x(pb) ≥ 1 (13)

(ii): If pe ∈ H2

If pb, pc, pd ∈ H2, draw the symmetric point of pe with respect to l, denoted p′e. It’s obvious that

||pbp′e|| ≥ ||pbpe|| (14)

||pcp′e|| ≥ ||pcpe|| (15)

||pdp′e|| ≥ ||pdpe|| (16)

So pb, pc, pd, p
′
e are mutually independent, p′e ∈ H1. It’s proved that pa, p

′
e are independent. Since ||pape|| ≥

||pap′e||, proved.
If at least one of pb, pc, pd is in H1, if there are at least two of these points in H1, we have

||pape|| ≥ x(pe)− x(pa) (17)

x(pe)− x(pa) ≥ x(pd)− x(pa) ≥ 1 (18)

proved.

Otherwise, if exactly one of pb, pc, pd is in H1, then the other two of pb, pc, pd are in H2. By Lemma 14,

||pape|| ≥ x(pe)− x(pa) ≥ x(pe)− x(pb) ≥ 1, proved.

Such lemma is a specific example of the strip splicing technique, but it’s enough to express the mian thought we

use. Let’s define the k-independence property of a strip as the property that for any k + 1 vertices in this strip

sorted by their x-coordinates in ascending order, the mutual independence of k consecutive vertices always imply the
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independence of the first and last vertex. As a matter of fact, strip with width
√
3 has 4-independence property as

we have just proved.

The general conclusions for k-independence is as follows.

Theorem 6. For k + 1 vertices in a strip with width h, if k-independence is to hold, it suffices to set h =

max
{
⌊k
3 ⌋,

√
3
2 ⌊k

2 ⌋
}
.

Proof. The proof is a simple application of the pigeonhole principle.

If we put k+1 vertices into a strip splicing with h strips with width 1, there exists one strip with at least ⌈k+1
h ⌉

vertices. By Lemma 10, we only need to have ⌈k+1
h ⌉ ≥ 4, thus h ≥ ⌊k

3 ⌋.
Similarly, by using Lemma 14, and view the strip as the splicing of n strips with width

√
3
2 , we only need to

have ⌈k+1
n ⌉ ≥ 3, so n ≥ ⌊k

2 ⌋, h ≥
√
3
2 n.

The advantage of applying such technique is that it optimizes the performance ratio at the cost of increasing

time and space complexity, a trade-off.

Note that in shifting strategy, i.e. Thm. 1, we require the width h to be an integer. This gives rise to the

phenomenon that in practice, we won’t take the width of the strip to be
√
3 although the 4-independence property

holds. Instead, we would floor the width to get 1. However, the approximation algorithm constructed by taking the

strip width as 1 has the same performance ratio but lower time and space complexity compared to that constructed

with strip width
√
3. We call such phenomenon domination, i.e. the performance by using strip with width 1

dominates that using strip with width
√
3.

By viewing strip with width 1 and
√
3
2 as ”basis”, we want to figure out when domination exists by comparing

⌊k
3 ⌋ and ⌊

√
3
2 ⌊k

2 ⌋⌋. The latter expression has one more floor operator since it’s not necessarily an integer.

Lemma 16. For k ∈ N, k ≥ 10,⌊k
3 ⌋ < ⌊

√
3
2 ⌊k

2 ⌋⌋.

Proof. The proof is based on a simple discussion on the remainder of k divided by 6.

(i): If k ≡ 0 (mod 6), k = 6p(p ≥ 2, p ∈ N), then ⌊k
3 ⌋ = 2p with ⌊

√
3
2 ⌊k

2 ⌋⌋ = ⌊ 3
√
3

2 p⌋ ≥ ⌊ 5
2p⌋. When p is even,

proved. When p is odd, ⌊ 5
2p⌋ =

5p−1
2 , proved.

Similarly, for k ≡ 1, 2 (mod 6) the lemma holds.

(ii): If k ≡ 3 (mod 6), k = 6p + 3(p ≥ 2, p ∈ N), then ⌊k
3 ⌋ = 2p + 1 with ⌊

√
3
2 ⌊k

2 ⌋⌋ = ⌊ 3
√
3

2 p +
√
3
2 ⌋ =

⌊ 5
2p+

√
3
2 + ( 3

√
3−5
2 )p⌋. It’s easy to know that

√
3
2 + ( 3

√
3−5
2 )p > 1, so ⌊

√
3
2 ⌊k

2 ⌋⌋ ≥ ⌊ 5
2p⌋+ 1. When p is even, proved.

When p is odd, ⌊ 5
2p⌋ =

5p−1
2 , proved.

Similarly, for k ≡ 4, 5 (mod 6) the lemma holds.

By the simple calculations in Lemma 16 above, we conclude that when k ≥ 10, no domination exists. When

k < 10, however, Lemma 16 still holds only for k = 8. So we conclude that when k = 8 or k ≥ 10, k ∈ N, no
domination exists, otherwise we always prefer using strip with width 1.
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PTAS for VCP3

For strip H with k-independence property, we transform VCP3 into MDISS problem. When we are using

dynamic programming to get the exact MDISS within strips, we need to fix k − 1 parameters to ensure that the

algorithm gives correct result. Since we are considering vertex pairs in such process, each additional parameter

increases the time complexity by a multiple of O(m2) (m is the number of vertices in the strip). Similarly, each

additional parameter increases the space complexity by a multiple of O(m).

Now we get two families of approximation algorithms for VCP3 based on the splicing of strips with width
√
3
2

and 1, the proofs of two theorems below are trivial.

Theorem 7. For n weighted vertices of a UDG, take width h = ⌊k
3 ⌋ as a splicing of strips with width 1, for

which k-independence holds. There exists an approximation algorithm for VCP3 with performance ratio 1 + 1
h , time

complexity O(n2k−2 log2 n) and space complexity O(nk log n). In particular, for the unweighted case, the algorithm

has time complexity O(n2k−2 log n) and space complexity O(nk).

Theorem 8. For n weighted vertices of a UDG, for k = 8 or k ≥ 10, k ∈ N, take width h = ⌊
√
3
2 ⌊k

2 ⌋⌋ as a splicing

of strips with width
√
3
2 , for which k-independence holds. There exists an approximation algorithm for VCP3 with

performance ratio 1 + 1
h , time complexity O(n2k−2 log3 n) and space complexity O(nk−1 log n). In particular, for the

unweighted case, the algorithm has time complexity O(n2k−2 log2 n) and space complexity O(nk−1).

The families of algorithms in Thm. 7 and Thm. 8 exhibits a trade-off between the accuracy and time complexity,

which forms the PTAS of the VCP3 when the parameter k changes.

Theorem 9. For n weighted vertices of a UDG, take width h = ⌊k
3 ⌋ as a splicing of strips with width 1, for which

k-independence holds. There exists a PTAS for VCP3 with performance ratio 1 + ε and time complexity O(nO( 1
ε )).

Proof. If we use strip with width 1:

Set ε = 1
h = 1

⌊ k
3 ⌋
, simple calculations show that the time complexity has upper bound O(n

6
ε+4 log2 n)=O(nO( 1

ε )),

when it comes to the unweighted case, the time complexity reduces by a factor of log n, so the conclusion still holds.

If we use strip with width
√
3
2 :

Set ε = 1
h = 1

⌊
√

3
2 ⌊ k

2 ⌋⌋
, simple calculations show that the time complexity has upper bound

O(n
2+ 8√

3
+ 8√

3
1
ε log3 n)=O(nO( 1

ε )).

So these two schemes only differ in constants, but both provide PTAS for VCP3 in time O(nO( 1
ε )).
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